# The Role of Microorganisms in the Disposal of Biological Waste

### **Editors**

### Aliaa Hussain Jabber Ibraheem

University of Babylon College of science Department of Biology

### Ali Abdul Hussein Mohammed Nasser

University of Karbala College of Science Department of biology

### Ali Mustafa Jabur Hussein

University of Babylon College of Science Department of Biology/Ecology

### Milad Munther Zahid Baniya

University of Kufa College of Science/ Department of Biology

AkiNik Publications® New Delhi

### Published By: AkiNik Publications

AkiNik Publications
169, C-11, Sector - 3,

Rohini, Delhi-110085, India

Toll Free (India) – 18001234070

Phone No.: 9711224068, 9911215212

Website: www.akinik.com Email: akinikbooks@gmail.com

Editors: Aliaa Hussain Jabber Ibraheem, Ali Abdul Hussein Mohammed Nasser, Ali Mustafa Jabur Hussein and Milad Munther Zahid Baniya

The author/publisher has attempted to trace and acknowledge the materials reproduced in this publication and apologize if permission and acknowledgements to publish in this form have not been given. If any material has not been acknowledged please write and let us know so that we may rectify it.

### © AkiNik Publications TM

Publication Year: 2024

Edition: 1<sup>st</sup>
Pages: 61

E-book ISBN: 978-93-6135-198-3

Paperback ISBN: 978-93-6135-522-6

Book DOI: https://doi.org/10.22271/ed.book.2830

*Price:* ₹305/-

### Registration Details

Printing Press License No.: F.1 (A-4) press 2016

> Trade Mark Registered Under

• Class 16 (Regd. No.: 5070429)

• Class 35 (Regd. No.: 5070426)

• Class 41 (Regd. No.: 5070427)

• Class 42 (Regd. No.: 5070428)

## Contents

| S. No | Chapters                                                       | Page No. |
|-------|----------------------------------------------------------------|----------|
| 1.    | The Role of Microorganisms in the Disposal of Biological Waste | 01-07    |
| 2.    | Types of Microorganisms Involved                               | 08-15    |
| 3.    | Biodegradation Process                                         | 16-22    |
| 4.    | Factors Influencing Microbial Activity                         | 23-30    |
| 5.    | Applications of Microorganisms in Waste Management             | 31-35    |
| 6.    | Challenges and Limitations                                     | 36-39    |
| 7.    | Future Perspectives                                            | 40-45    |
|       | References                                                     | 46-61    |

# Chapter - 1

# The Role of Microorganisms in the Disposal of Biological Waste

### 1. Introduction

Environmental pollution is caused by discharging biological wastewater from different areas without proper treatment, management, and utilization. This leads to the accumulation of a significant amount of waste, which in turn can create a multitude of unpredictable problems and further contribute to environmental pollution. It is worth noting that sewage waste from the food industries constitutes a major portion of this issue, considering the extensive presence of food production facilities such as dairy industry, breweries, and sugar industry in various parts of the world. As a result, it has become imperative for mankind to prioritize efficient waste disposal methods, with biodegradation being a promising process that can help transform waste into less hazardous forms. The natural disposal of biological waste relies heavily on the collaborative action of many groups of microorganisms, including bacteria, actinomycetes, molds, and yeast. These microorganisms play a crucial role in breaking down both the organic and inorganic components of the waste, ultimately converting them into harmless end products. Such a process encompasses three main stages: mineralization, which involves the oxidation of organic carbon; nitrification, where microorganisms oxidize ammonia to nitrate via nitrite; and denitrification, which is the reduction of nitrates to nitrogen gas—a key component of the nitrogen cycle. This cycle essentially facilitates the recycling of resources.

Within this chapter, we delve deeper into the extensive discussion of the pivotal role played by microorganisms in the disposal of biological waste. We explore the intricate mechanisms through which these microorganisms act, thus transforming waste into less toxic substances that pose a reduced risk to the environment. Additionally, we shed light on their potential in contributing to waste management. Furthermore, we elucidate the diverse methods through which microorganisms can be effectively employed and utilized in the treatment and disposal of waste produced by the food industry. These methods have been thoroughly examined and experimented with by the author,

ensuring their reliability and efficacy. The presence of diverse microorganisms in the disposal of biological waste serves as a testament to the vast complexity of nature's design. It is truly fascinating to witness the collaborative efforts of bacteria, actinomycetes, molds, and yeast, working in harmony to break down organic matter and convert it into harmless substances. As they engage in this delicate process, these microorganisms play a vital role in preserving the delicate balance of the environment. Throughout history, mankind has grappled with the challenge of waste disposal. However, with the discovery of biodegradation as a potential solution, there is a glimmer of hope. By employing this process, waste can be transformed into less hazardous forms, mitigating the harmful impact on the environment. The significance of biodegradation cannot be overstated, particularly when it comes to the disposal of biological waste from the food industry. In the realm of waste management, microorganisms have emerged as invaluable allies. Their ability to break down and neutralize both organic and inorganic waste is nothing short of remarkable. Through their tireless efforts, they contribute to the creation of a healthier and more sustainable environment. It is important to note that the process of waste disposal involving microorganisms occurs in three distinct stages. The first stage, mineralization, involves the oxidation of organic carbon. This step is essential for breaking down complex compounds into simpler forms that are more easily processed by microorganisms. Following mineralization, nitrification comes into play. In this stage, microorganisms oxidize ammonia, converting it to nitrate via nitrite. This process is crucial as it helps to prevent the accumulation of toxic levels of ammonia in the environment. Finally, denitrification takes place, wherein nitrates are reduced to nitrogen gas. This step is a vital component of the nitrogen cycle, ensuring that the essential element is recycled and made available to sustain life.

In this chapter, we embark on an exploratory journey into the intricate mechanisms behind the disposal of biological waste. We delve into the detailed workings of microorganisms, unravelling the inner workings of their transformative abilities. By shedding light on their potential, we hope to inspire further research and innovation in the field of waste management. Furthermore, we unveil a diverse range of methods through which microorganisms can be effectively utilized in the treatment and disposal of waste produced by the food industry. These methods have been meticulously examined and tested by the author, guaranteeing their reliability and efficacy. It is our sincere belief that the knowledge shared within this chapter will pave the way towards a more sustainable future, where waste is no longer a burden, but a valuable resource waiting to be harnessed. (Srivastava *et al.* 2020) (Amin

et al. 2021) (Mani et al. 2020) (Patel et al. 2022) (Ayilara et al., 2020) (Sharma et al. 2022) (Pal et al. 2020) (Singh and Shyu 2024) (Saxena et al., 2020).

### 1.1 Definition of Biological Waste

In principle, all the biological waste derived from biological sources is formed by living beings through their vital activities, formed by living tissues and cells belonging to the vegetal and animal kingdom. This involves a great variety of forms, which can include vegetable waste, by-products of agricultural processing or food industries, wastewater, waste richest food production (dairy products, canned products, etc.), animal by-products that come from the slaughtering, but also food shops and fish processing, pharmaceutical industry, the production of leathers, chemically treated wood or wool, carcasses of dead wildlife or recovered after accidents. In this wide panorama there are microbiological aspects that unite conservation problems, or the elimination and recovery of residuals, from livestock, agro-food, and trade with obvious repercussions on environmental protection. Biodegradation is a metabolic process particularly common among microorganisms: a large fraction of these in fact, for their growth and development, makes use of complex organic substances, whose breakdown often occurs with a subsequent transformation even in anabolic metabolism. From this point of view, only the animal and vegetables that accumulate and metabolic consumption processes that result in energy and structural reserves in case of need can be subject to biodegradation. In particular, the more refractory biomolecules, most often are the fatty substances of animal and vegetable origin, the plant fibers such as cellulose and hemicellulose. Biodegradation plays a crucial role in the natural balance of ecosystems. It is a metabolic process that occurs primarily among microorganisms, allowing them to break down complex organic substances. These substances, derived from living tissues and cells of plants and animals, make up the diverse range of biological waste generated by various sources. Examples of such waste include vegetable remnants, by-products from agricultural and food industries, wastewater, and food production leftovers (such as dairy and canned products). Animal byproducts resulting from slaughtering activities, as well as waste from food shops and fish processing, pharmaceutical manufacturing, leather production, and chemically treated wood or wool, also contribute to this wide spectrum of biological waste. Additionally, carcasses of deceased wildlife or those recovered after accidents are part of this extensive panorama. Within this context, it is important to consider the microbiological aspects associated with the conservation, elimination, and recovery of residuals. These aspects have significant implications for environmental protection, as they are closely linked to the livestock, agro-food, and trade sectors. Microorganisms are adept at biodegradation, making use of complex organic substances for their growth and development. The breakdown of these substances often leads to subsequent transformations, even involving anabolic metabolism. However, not all biological materials are susceptible to biodegradation. Only animal and plant-based substances that accumulate through metabolic consumption processes, serving as energy and structural reserves, are subject to this process. Among these materials, the more resistant biomolecules tend to be fatty substances of animal and vegetable origin, as well as plant fibers like cellulose and hemicellulose. The understanding and management of biodegradation have become crucial in modern society, where sustainable waste management practices are increasingly prioritized. By harnessing the innate capabilities of microorganisms and utilizing biodegradation processes, we can contribute to the protection and preservation of our environment. Moreover, recognizing the diverse range of biological waste sources and addressing the challenges associated with their conservation, elimination, and recovery will pave the way for a more sustainable and harmonious coexistence with nature. The importance of biodegradation cannot be overstated, as it not only promotes environmental protection but also contributes to the overall health and balance of ecosystems. Through the breaking down of complex organic substances, microorganisms play a vital role in recycling and reusing biological waste. By efficiently decomposing materials derived from living tissues and cells, they help reduce the environmental impact of various industries and activities. For example, vegetable waste from agricultural and food processing can be effectively broken down by microorganisms, minimizing its contribution to landfills and decreasing the release of harmful gases. Similarly, wastewater and by-products from the pharmaceutical and textile industries can undergo biodegradation, leading to the safe disposal or reuse of these materials. The ability of microorganisms to metabolize and transform complex organic substances not only ensures the efficient use of resources but also contributes to the search for alternative and sustainable solutions. Researchers and scientists are exploring ways to harness the potential of biodegradation in various fields, such as bioenergy production, bioremediation of contaminated sites, and the development of eco-friendly materials. By understanding the fundamental mechanisms and factors that influence biodegradation processes, we can improve waste management practices and mitigate the negative impacts of biological waste. This includes optimizing environmental conditions, such as temperature, pH, and nutrient availability, to facilitate the growth and activity of microorganisms responsible for biodegradation. Additionally, the development of innovative technologies and approaches, such as genetic engineering and microbial consortia, can enhance the efficiency and versatility of biodegradation processes. In conclusion, as we continue to grapple with the challenges of waste management and environmental sustainability, the importance of biodegradation cannot be overlooked. By recognizing its fundamental role in the natural balance of ecosystems and harnessing its potential, we can move towards a more harmonious and sustainable coexistence with nature. By embracing biodegradation as a valuable tool and implementing effective strategies, we can reduce our ecological footprint, protect natural resources, and pave the way for a healthier and greener future. (Mishra et al. 2021) (Ali et al. 2021) (Rodríguez et al. 2020) (Amobonye et al. 2021) (Zhang et al., 2020) (Zhang et al., 2020).

### 1.2 Importance of Proper Disposal

The improper disposal of biological waste can lead to various hazards and environmental problems, which can have detrimental effects on both humans and the natural environment. Examples of hazards that are attributed to improper disposal include unsafe water, the spread of diseases, and air pollution, among others. These hazards can pose significant risks to the health and well-being of individuals as well as other living organisms. In order to mitigate these risks and ensure the safety of the environment, proper disposal of biological waste is crucial. This involves managing the waste at the source to prevent it from causing harm. By reducing the amount of biological waste generated, the management of these wastes becomes easier and more efficient. This not only helps prevent many of the problems that arise from the improper management of biological waste but also promotes a sustainable and ecofriendly approach. One effective way to manage biological waste is through the use of natural microorganisms. These microorganisms, which are present in various forms across different ecosystems, have the ability to break down and decompose the waste, thereby reducing its harmful effects. In fact, microbes can be harnessed and enhanced to treat or reuse waste, which further reduces the need for chemical treatments in the disposal process. This innovative approach not only ensures the proper management of the waste but also minimizes the potential environmental impact, making it a sustainable solution to the ever-growing problem of biological waste. There are several methods of biological waste disposal, each with its own set of advantages and considerations. One common method is burying the waste in soil, which serves as a natural filter and helps reduce the number of pathogens present. However, it should be noted that burying waste does not necessarily treat it to the same depth or at the same rate as other methods. For instance, algal or seaweed cultures are specifically designed to deal with biological waste and can provide more efficient and effective treatment options. Microorganisms play a vital role in the disposal of biological waste, and their presence is crucial for the protection and sustainment of the environment. Not only do they aid in waste stabilization, but they also contribute to nutrient regeneration and the biodegradation of chemicals that contaminate water and the atmosphere. Waste stabilization refers to the process by which microorganisms consume the chemical constituents within waste, thus facilitating effective waste disposal and minimizing the risks associated with it. In conclusion, the proper disposal of biological waste is not just an important consideration but an essential requirement for the safety and well-being of the environment, humans, and other living organisms. It is imperative to manage these wastes efficiently at their source and implement measures to reduce their generation. The use of natural microorganisms is a promising and sustainable approach to the treatment and disposal of biological waste, minimizing the reliance on chemical treatments that can have negative environmental impacts. By utilizing appropriate disposal methods, such as burial in soil or above-ground disposal, we can effectively minimize the risks associated with biological waste. Overall, microorganisms play a crucial role in waste management, contributing significantly to the protection and sustainment of our environment, ensuring a greener and healthier future for generations to come. Expanding the text, we can emphasize the importance of raising awareness and implementing efficient waste management strategies at both individual and societal levels. By educating the public and promoting responsible waste disposal practices, we can further reduce the negative impact of biological waste on our environment. Additionally, governments and organizations should invest in research and development to discover new and improved methods of biological waste management that align with sustainability goals. Through international collaborations and sharing of best practices, we can work towards developing global standards for biological waste disposal, ensuring consistency and effectiveness across different regions. Furthermore, addressing the issue of biological waste is not limited to land-based activities but also extends to marine environments. Implementing strict regulations and monitoring programs can help prevent the dumping of biological waste into oceans and water bodies, preserving the delicate marine ecosystems and safeguarding aquatic life. Lastly, proper waste management should be broader sustainability frameworks, recognizing integrated into interconnectedness with other environmental concerns such as climate change, resource depletion, and pollution. By taking a holistic approach to waste management, we can create a more resilient and harmonious relationship between human activities and nature. (Rastogi *et al.*, 2020) (Das & Ghosh, 2022) (Srivastava *et al.* 2020) (Sharma *et al.*, 2020) (Patel *et al.* 2022) (Shahid *et al.* 2020) (Varjani *et al.*, 2021) (Saeed *et al.* 2022).

# Chapter - 2

### **Types of Microorganisms Involved**

Microorganisms such as bacteria, fungi, and viruses, among others, play a very distinctive and crucial role in the safe disposal and decomposition of biological waste materials. The process by which organic waste is broken down and converted into simpler substances is known as biodegradation, made possible by the actions of these remarkable microorganisms. In particular, bacteria are the most primitive organisms that actively participate in global degradative microbial activities. The environment is home to an astonishing diversity of bacteria, with over 1200 different bacterial genera having been identified thus far. The study of these bacteria is of great importance, as scientists aim to identify and understand which specific bacteria are responsible for the degradation of xenobiotic chemicals, which are harmful substances found in the environment. Alongside bacteria, filamentous fungi have also been found to be highly efficient in the colonization and decomposition of organic waste materials. These fungi thrive in environments with high organic content, where they absorb nutrients from biodegraded matter and efficiently break down lignin and cellulose. Among the various types of fungi involved in the disposal of organic waste, species belonging to the Ascomycetes and Basidiomycetes families exhibit a higher level of involvement and effectiveness. The role of viruses in the biodegradation process has also garnered increasing interest. Yeast viruses, in particular, have shown promising potential in enhancing biodegradation. Researchers have discovered both lytic and nonlytic viruses in yeast, which possess the remarkable ability to aid in the breakdown of organic matter. This discovery adds a new layer of complexity and fascination to the field of biodegradation. Another fascinating example of microorganisms with biodegradative capabilities is the Rickettsia-like organisms. These organisms were initially known as obligate intracellular symbionts of ticks. However, they have also been found to have associations with buried truffles and ascomata ascogenous fungi. The presence of these organisms further emphasizes the diverse range of microorganisms that contribute to the degradation of organic waste. In conclusion, the crucial role of microorganisms in the disposal of organic compounds in the natural environment cannot be overstated. These remarkable organisms possess the ability to produce various enzymes that facilitate the transformation of complex organic compounds into simpler, more mineralized substances. These simplified substances can then be easily digested and utilized by not only microorganisms themselves but also other biological organisms present in the ecosystem. The ongoing study of microorganisms and their biodegradative capabilities is vital for understanding and managing the disposal of organic waste in an effective and sustainable manner. Microbial community dynamics are influenced by various factors, including temperature, pH, nutrient availability, and the presence of other microorganisms. These factors can affect the efficiency and effectiveness of biodegradation processes. For example, high temperatures can accelerate microbial activity, leading to faster degradation of organic matter. On the other hand, extreme pH levels can inhibit microbial growth and enzymatic activity, thereby slowing down biodegradation. Additionally, the presence of certain microorganisms can either enhance or hinder biodegradation processes. Some microorganisms produce enzymes that are highly efficient in breaking down specific types of organic compounds, while others may compete for resources and impede biodegradation. Understanding between different complex interactions microorganisms environmental factors is crucial for optimizing biodegradation processes and developing sustainable waste management strategies. advancements in molecular biology and biotechnology have facilitated the identification and characterization of specific microorganisms and their metabolic capabilities. These technologies allow scientists to better understand the genetic and physiological basis for microbial biodegradation and to potentially engineer microorganisms with enhanced biodegradative abilities. This knowledge can be applied in various fields, including the treatment of industrial and agricultural waste, the restoration of contaminated environments, and the development of bioremediation strategies. The field of biodegradation continues to evolve and expand as new discoveries are made and new technologies are developed. Ongoing research efforts aim to unravel the intricate mechanisms underlying microbial biodegradative processes and to harness the potential of microorganisms for sustainable waste management and environmental remediation. By harnessing the power of microorganisms, it is possible to mitigate the environmental impact of organic waste and create a more sustainable future. (Alvarez et al. 2022) (Zhang et al., 2022) (Zhang et al., 2021) (Kong et al. 2020) (Cerqueda-García et al. 2020) (Teixeira et al., 2020) (Rodríguez-Salazar et al. 2021) (Hidalgo et al. 2020) (Dou et al. 2021).

### 2.1 Bacteria

Microorganisms, including bacteria, are found abundantly throughout the natural world, permeating every nook and cranny of our planet. They can be

discovered in diverse environments, ranging from the depths of the ocean to the highest mountain peaks. Whether it be within homes, farms, or industries, biological waste is composed of a substantial amount of organic compounds, all of which display remarkable potential to be broken down. In order to provide an accurate representation of the immense diversity found in the microbial realm, including the information within this text and other reliable sources, it is crucial to reserve the term "bacteria" for cases where the group can be specifically identified, thus highlighting their individual characteristics and contributions. Most bacteria possess a specialized skill set for decomposing matter, wielding an incredible prowess in the realm of recycling and breakdown. What is truly astounding is the fact that many bacteria possess a wide range of metabolic abilities, enabling them to adapt and thrive in various ecological niches. Their adaptability and versatility can be considered as definitive attributes of bacteria as a whole, as they constantly navigate and conquer new frontiers. Theories suggest that several pathways commonly found in this group of organisms may have been lost at some point in their evolutionary journey, only to be accumulated and retained within specific subgroups that include members of the domain Bacteria. It is through this intricate intertwining of genetic information that bacteria continue to evolve and differentiate, leading to remarkable variations within the bacterial world. In numerous cases, bacteria work together synergistically, harmoniously dancing in a complex symphony of biochemical reactions. One species may break down metabolic byproducts produced by another species, which then utilizes these byproducts as raw materials for its own growth. This dance of interdependence and collaboration allows bacteria to thrive and achieve incredible feats in the realm of waste disposal and nutrient cycling. Given the significant role played by bacteria in the turnover and degradation of organic matter (biomass), it becomes increasingly evident that bacteria are the primary agents responsible for waste disposal and the preservation of ecosystem balance. In the forthcoming sections of this chapter, the main focus will be on bacteria, the unsung heroes of the microbial world. Bacteria exert their influence and impact through two primary modes of action, each with its own set of intriguing mechanisms. The first mode involves the release of biologically active molecules, akin to molecular warriors that can shape the competitive landscape. These molecules span across a wide spectrum of compounds, including aliphatic acids, ammonia, aldehydes, peroxides, and various others, each with its own unique set of properties and effects on their microbial counterparts. The battlefield of biochemical warfare rages on, as bacteria strive to establish dominance and secure their ecological niche. The second mode of action revolves around intracellular reactions, occurring within the very heart of bacterial cells. In this intricate dance of biochemistry, bacteria utilize electron acceptors to obtain the metabolic energy necessary for their growth and survival. The metabolic waste products that arise from these reactions play a critical role, serving as an energy reservoir for the formation of essential metabolites. It is through the reduction of oxygen, which typically occurs within the cell, that bacteria store and accumulate the potential for further biochemical transformations. This energy reserve allows bacteria to dynamically respond to the changing environmental conditions and utilize their metabolic arsenal to its fullest potential.

The rate at which biodegradation occurs is influenced by a myriad of factors, each playing a vital role in the intricate dance of microbial metabolism. The concentration of available pollutants in the surrounding environment acts as a driving force, determining the speed at which bacteria can act upon and degrade these compounds. Additionally, the degradative capacity present within the bacterial population serves as a crucial factor, dictating the collective metabolic power that bacteria exert. However, this degradation process is not without its challenges. Toxic metabolic byproducts can arise as a consequence of biochemical reactions, hindering the process and posing additional barriers to efficient waste disposal. The impact of these toxic byproducts must be carefully considered and mitigated to ensure the success of biodegradation processes. All of these factors are intricately linked to and dependent on the specific environmental conditions that exist within the waste material. Temperature, pH, oxygen availability, and the presence of other organisms can significantly influence the dynamics of bacterial degradation. It is through the delicate interplay of all these factors that bacteria orchestrate their symphony of waste disposal, turning organic compounds into reusable building blocks and driving the continuous cycle of life on our planet. As we delve deeper into the fascinating world of bacteria and their intricate roles in waste management, a clearer picture emerges. Bacteria, with their remarkable adaptability, metabolic prowess, and cooperative strategies, stand as the primary agents responsible for the delicate balance of nature. Without their tireless efforts in breaking down and recycling organic matter, our ecosystems would cease to function as we know them. So let us immerse ourselves in the captivating realm of bacteria and unravel the intricate mysteries that they hold. (Parmar et al. 2022) (Sharma et al. 2022) (Priya et al. 2021) (Okeke et al. 2021) (Soni et al., 2022) (Haenni et al. 2022) (Shivalkar et al. 2021).

### 2.2 Fungi

Fungi have been repeatedly mentioned as crucial contributors in the decomposition process of organic matter. These remarkable organisms

possess the ability to secrete a fascinating array of extracellular enzymes, which play a pivotal role in breaking down complex organic compounds into their constituent monomers. Subsequently, these compounds are then effortlessly transported into the fungal cells, enabling their efficient utilization as sources of energy or for growth purposes. The enzymatic activities displayed by fungi have captivated numerous researchers due to their immense significance in the biological breakdown of a diverse range of polymers. This includes but is not limited to chitin, cellulose, lignin, polycyclic aromatic hydrocarbons, pesticides, and the various plastic compounds produced by industries. The aforementioned properties render fungi exceptional agents in the management of a wide array of different types of waste or contaminated fluids, which are frequently generated by human activities. For example, they have been effectively employed as biological agents for the degradation of oils, even within nutrient-limited environments, displaying their unparalleled adaptability. Additionally, fungi have demonstrated a pivotal physical role in the disintegration of complex organic wastes, such as coagulated blood pellets. Moreover, fungi actively participate in the treatment of various other types of waste. Notably, they play a significant role in preparing compost from the waste of vegetable origin. Furthermore, fungi have been utilized in an innovative approach known as bioremediation. In this approach, fungi counteract contaminated soils and sludge, as well as the systems of constructed wetlands, combating both organic and inorganic contaminants that plague our environment. In recent times, there has been a substantial increase in the number of studies focused on these extraordinary organisms. For instance, various approaches have been adopted to investigate the intricate biotransformation subprocesses that bring about changes in the wastes derived from human activities. Saprotrophs, which are the major natural decomposers within ecosystems, are particularly adept at breaking down complex organic compounds such as cellulose and lignocellulose. These fungi play a crucial role in dismantling the woody biomass structure of trees and are known to actively participate in the vital recycling of wood. It has been reported that saprophytic fungi are capable of causing two types of wood decomposition: brown rot or white rot, depending on the type of metabolism possessed by the individual fungi. To effectively break down woody material, many saprophytic fungi synthesize an extensive array of diverse enzymes, including cellulases, hemicellulases, and various types of ligninases. These ligninases are particularly intriguing and include enzymes such as laccase, manganese peroxidase, lignolytic peroxidases, and numerous other peroxidases. When a given plant material is encountered, fungi must expend significant amounts of energy in order to consume, colonize, and ultimately gain access to the wood. This arduous task is only made possible through the employment of intricate enzymatic mechanisms that are intricately involved in the biosynthesis of numerous enzymes. Consequently, a vast array of enzymes associated with the lignocellulolytic deconstruction process can be observed. In fact, recent advancements in the fields of genetics and molecular-based techniques have bolstered the understanding that many fungi possess the extraordinary capacity to produce such extracellular enzymes. This is a direct result of their continuous expression of these enzymes at constant levels. Notably, white rot fungi, which often possess LuxR-type transcription factors like the Poa PIN gene for a Xylose pathway that aids in sugar metabolism, are of significant interest in this regard. The production of these enzymes has been extensively documented in numerous studies. For instance, the fungus Phanerochaete chryosporium, among other white rot fungi, displays a notable requirement for carbon utilization. This prompts the activation of enzyme production when lignin is present. The growth of this particular fungus reaches its maximum potential once the enzymes emerge. Subsequently, a second phase ensues, wherein the fungus continues to diligently degrade these enzymes as its own growth continues unabated. While it is true that many decomposers actively consume and break down organic matter, it is highly improbable that a structural barrier is maintained within the cells of trees to prevent the entrance of other organisms. The accumulation of dead trees or woody debris can essentially serve as a plentiful source of food for insects, ultimately providing a cherished niche for woody detrital communities. Given the generation of white syngio wood brought about by a multitude of metabolic relationships among various wood-decay fungi, it is essential to delve into a specific example. Notably, the decay of wood can be attributed to the fungus Echinodontium taxodii. Both gentamicin and spectroscopy have provided valuable insights, highlighting the intermediate role played by dicarboxylate transporters, particularly in conjunction with saprobic, non-homeomorphic basidiomycota. lignin-degrading Another phenomenon observed in multiple-fungal systems is triploid DNA polyploidy (3n), which is commonly seen, showcasing the intricate genetic makeup and diverse capabilities of these extraordinary organisms. (De Beeck et al., 2021) (Kumari et al. 2021) (Temporiti et al., 2022) (Zucconi et al. 2020) (Cairns et al., 2021) (Dashora et al. 2023).

### 2.3 Viruses

Viruses play a massive and complex role in the disposal of biological waste, mainly from human and animal sources or other biomasses. However, their role and impact on microbial ecology, as well as their ability to accelerate

or stop processes, are still not sufficiently understood. Empirical experiments conducted with viruses have led to surprising results, particularly in the application of viruses for the treatment or regulation of certain components or parameters of waste management, such as sludge treatment. The importance of viruses in the process of biodegradation and their role in viral consortia in various environments are not well-known. It is known that viruses can limit the increase in populations of certain bacteria that are biodegraders, as they infect all bacteria capable of degrading starch in a bioreactor. To eliminate all the bacteria capable of infecting and degrading starch, a total of 7. 109 bacteriophages would be required, without infecting the same bacterium twice. Many bacteria have evolved to break down waste and are known as "degraders." These degradative bacteria, found in water and soil, work best in the presence of oxygen. They use oxygen as a weapon through oxidative metabolism to help them break down waste. Because oxygen is such a powerful weapon against waste, the organic molecules are attacked quickly and are scorched. This process of waste treatment is known as "aerobic disposal" or "aerobic biodegradation. " Viruses that infect bacteria, known as bacteriophages or phages, have a strong impact on natural microbial communities as they eliminate specific groups of bacteria. Unlike decomposer bacteria, which are the dominant group of organic waste decomposers, decomposing fungi are repeatedly and intensely attacked by viruses. The use of viruses as tools in chemical and biological waste management, particularly in sludges, is not well-known. In recent years, however, research has begun to shed light on the potential of employing viruses as agents for waste treatment. Studies have shown that certain bacteriophages are highly effective in targeting and eliminating specific bacteria responsible for waste degradation. By specifically infecting and degrading these bacteria, the viruses can significantly enhance the efficiency of waste disposal processes. Additionally, the use of viruses in waste management has shown promise in reducing the release of harmful byproducts and pollutants. Through targeted viral interventions, it may be possible to mitigate the negative environmental impacts of waste disposal. Furthermore, the use of bacteriophages in sludge treatment has shown potential in improving the overall quality and safety of treated sludge. By eliminating harmful bacteria and pathogens, viruses can aid in transforming sludge into a safer and more manageable material. Ongoing research aims to further explore the diverse applications of viruses in waste management and to develop innovative strategies for their utilization. By harnessing the power of viruses, we may unlock new possibilities for sustainable and effective waste disposal practices. As our understanding of their role and impact continues to grow, viruses may emerge as invaluable tools in the fight against biological waste. The potential for viruses to revolutionize waste management is vast, and exploring their full capabilities will lead us to innovative solutions for a cleaner and healthier environment. (Chen *et al.* 2021) (Petrovich *et al.* 2020) (Moresco *et al.* 2021) (Chen *et al.* 2021) (Gao *et al.* 2022).

# Chapter - 3

### **Biodegradation Process**

Microorganisms play an incredibly significant role in the efficient disposal and management of various types of biological waste. One of the remarkable capabilities of these microorganisms is their ability to attack and break down nearly all types of common organic compounds through the process of enzymatic degradation. This means that, depending on the specific characteristics of the compound or mixture of compounds that need to be microorganisms eliminated, possessing the appropriate complements can be appropriately tailored to facilitate the complete degradation of the waste material. Importantly, this degradation can be achieved without the production of interim compounds, such as hydrogen sulfide, that may further contribute to environmental concerns. When microorganisms are engaged in the process of breaking down simple or complex organic matter, the resultant end products are typically inorganic in nature. However, it is worth noting that there are certain low-molecular-mass compounds, often referred to as recalcitrant compounds, that have the potential to persist even after microbial degradation. These compounds, especially those that have not previously been encountered in the biosphere, can be solubilized if they are discharged. Therefore, it is crucial to address the potential biodegradability of sorbed substances, as they can also pose significant environmental challenges. The biodegradation of a particular compound follows a distinctive enzymatic pathway, which comprises a sequence of reversible steps. In this process, the compound initially undergoes binding or adsorption, where it interacts with the surface of an enzyme through a special adherence mechanism. This adsorption enables multiple high turnover and multi-indoctrination reactions that are crucially regulated by the associated microorganisms. It is worth mentioning that the formation of multienzyme complexes plays a vital role in facilitating the process of biodegradation. Ultimately, it is important to recognize that biodegradation is essentially a nonelectrochemical process. This means that no electron transfer occurs between the external environment and the reacting organic compound during the enzymatic conversion step. Instead, the degradative process primarily focuses on the addition of additional atoms to the reacting carbon

oxidative and hydrolytic steps. Through these mechanisms, microorganisms effectively transform and break down organic compounds, making them an indispensable asset in the sustainable management of biological waste. Microorganisms' ability to efficiently degrade and manage various types of biological waste is crucial for the sustainable disposal of these materials. The enzymatic degradation process carried out by these microorganisms is an impressive capability that allows them to attack and break down almost all common organic compounds. This means that microorganisms possessing appropriate enzymes can be specifically tailored to facilitate the complete degradation of waste materials, depending on the characteristics of the compounds that are to be eliminated. The remarkable aspect of this degradation process is that it can be achieved without the production of interim compounds (such as hydrogen sulfide), which could further contribute to environmental concerns. When microorganisms are involved in breaking down simple or complex organic matter, the resulting end products are usually inorganic in nature. However, it is worth noting that there are certain low-molecular-mass compounds, known as recalcitrant compounds, that can persist even after microbial degradation. These compounds, especially those that have not been encountered in the biosphere before, can be solubilized if they are discharged. Thus, it is crucial to address the potential biodegradability of sorbed substances, as they can pose significant environmental challenges. The biodegradation of a specific compound follows a distinctive enzymatic pathway, consisting of a sequence of reversible steps. In this process, the compound initially undergoes binding or adsorption, interacting with the surface of an enzyme through a special adherence mechanism. This adsorption allows for multiple high turnover and multi-indoctrination reactions, which are crucially regulated by associated microorganisms. It is worth emphasizing that the formation of multienzyme complexes plays a vital role in facilitating the biodegradation process. Ultimately, it is important to recognize that biodegradation is essentially a nonelectrochemical process. This means that during the enzymatic conversion step, there is no electron transfer between the external environment and the reacting organic compound. Rather, the degradative process primarily involves the addition of additional atoms to the reacting carbon through oxidative and hydrolytic steps. These mechanisms effectively transform and break down organic compounds, making microorganisms an indispensable asset in the sustainable management of biological waste. (Deng et al. 2020) (Bose et al. 2021) (Touliabah et al. 2022) (Imron et al. 2020) (Berg et al. 2020) (Chunyan et al., 2023) (Bahl et al., 2021) (Jabbour et al. 2021) (El-Shamy, 2020).

### 3.1 Enzymatic Breakdown of Organic Matter

Microorganisms are highly adept at generating a multitude of complex biochemical systems over millions of years, on scales ranging from individual cells to the vast expanse of the global biosphere. Through the course of evolution, microorganisms have developed the ability to harness the raw materials made available through physical and chemical processes on our planet. This enables them to continuously regenerate molecular structures, an essential aspect of their existence. The primary function of microorganisms in the realm of life is to efficiently break down deceased plants, animals, and other natural organic matter, ultimately enabling the complete recycling of elements and the regeneration of low molecular weight substances necessary for sustaining life. Enzymes, with their formidable oxidizing power, play a crucial role in the degradation of macromolecules, particularly within the cell. Endocellular proteins, nucleic acids, and phospholipids within cell membranes are targeted by these powerful enzymes. However, the remnants of these macromolecules can persist for extended periods of time and require exposure to weathering and the actions of macroorganisms for complete breakdown. In the realm of biological waste disposal, microorganisms employ enzymatic reactions as a fundamental mechanism to fulfill their vital tasks. Enzymes possess the remarkable ability to accelerate chemical reactions by several orders of magnitude, and their engagement in these reactions necessitates adherence to a kinetic pattern known as Michaelis–Menten saturation kinetics. This enables cellular enzymatic reactions to maintain the appropriate reaction velocity for essential metabolic processes, even in environments where reactant concentrations range from millimolar to picomolar, or even femptomolar and attomolar, as seen in our planet's oceans and surface waters. Consequently, cellular enzymatic reactions occur optimally within specific pH ranges that are prevalent in natural media, such as rivers, lakes, and tropical soils. The domains responsible for phosphoryl transfer in proteins, as well as in the exchange of phosphoryl groups between molecules such as sugar phosphates, are ubiquitous throughout the vast majority of organisms. These domains play a pivotal role in ATP generation, which serves as the universal currency of biological energy. Microorganisms have evolved intricate mechanisms to efficiently utilize and produce ATP, enabling them to drive essential cellular processes. ATP synthesis occurs primarily through the process of oxidative phosphorylation, which involves the transfer of electrons along a series of carriers embedded in the inner mitochondrial membrane. This electron transfer generates a proton gradient across the membrane, which is used by ATP synthase to harness the energy and produce ATP. The enzymatic reactions involved in ATP generation are finely regulated to ensure optimal efficiency and energy production. In addition to ATP production, microorganisms also play a vital role in nitrogen cycling, an essential process for the availability and utilization of nitrogen in the environment. Nitrogen is a critical element for the synthesis of proteins, nucleic acids, and other essential biomolecules. Microorganisms have evolved various strategies to convert nitrogen between different forms, including nitrogen fixation, nitrification, denitrification, and ammonification. Nitrogen-fixing bacteria, such as Rhizobium, form symbiotic relationships with certain plants, enabling them to convert atmospheric nitrogen into a usable form for plant growth. Nitrifying bacteria convert ammonium into nitrate, while denitrifying bacteria convert nitrate back into nitrogen gas, completing the nitrogen cycle. These microbial processes are essential for maintaining the balance of nitrogen in ecosystems and ensuring the availability of this vital nutrient for all organisms. Furthermore, microorganisms contribute significantly to the cycling of carbon, a fundamental element in the structure and function of all living organisms. Microbial processes, such as photosynthesis, respiration, and decomposition, are key drivers of carbon cycling in both terrestrial and aquatic ecosystems. Photosynthetic microorganisms, such as cyanobacteria and algae, utilize sunlight to convert carbon dioxide into organic matter, releasing oxygen as a byproduct. This process plays a crucial role in the global carbon cycle and is responsible for a significant portion of the oxygen present in the Earth's atmosphere. On the other hand, microbial decomposition of organic matter leads to the release of carbon dioxide back into the atmosphere through the process of respiration. This balance between carbon fixation and carbon release helps maintain the equilibrium of carbon in the biosphere. In summary, microorganisms are integral to the functioning of ecosystems and the maintenance of life on our planet. Their adeptness in generating complex biochemical systems, their role in recycling essential elements, and their involvement in energy production, nitrogen cycling, and carbon cycling highlight their significance in sustaining life. Through their enzymatic reactions and metabolic processes, microorganisms continuously contribute to the balance and resilience of Earth's ecosystems. Understanding and harnessing the potential of microorganisms can aid in various fields, including agriculture, biotechnology, and environmental conservation, ultimately benefiting both humans and the natural world. (Prasad et al. 2021) (Hemkemeyer et al. 2021) (Kumar et al., 2022) (Yadav et al. 2021) (Srivastava et al. 2020) (Basu et al. 2021) (Oliveira et al. 2020) (Tian et al., 2021) (Roy et al., 2021).

### 3.2 Role of Microbial Consortia

The earlier discussions clearly indicate that the pooled activities of

microbial consortia result in efficient biodegradation of various complex wastes. A considerable number of experimental evidence has demonstrated that no single microorganism is able to efficiently convert complex mixtures of pollutants into simple products. A possible explanation for the need for such collective action might be figured out from our knowledge of ecophysiological contributions of diverse microbes and their interactions. It has been suggested that the mixed populations working together are better adapted to the fastchanging substrate conditions, toxic occurring products, and the better way of circulating electrons. It has been demonstrated that such assemblages provide a better synergistic work through the exchange of messages, cross-feeding, and indirect protections against toxins and survival. Since it can be reasonably argued that these interactions ultimately result in better management and complete disposal, these studies on microbial consortia in biodegradation have drawn a lot of attention. Microbial and Metabolic Diversity The extensive biodiversity that exists on the planet is largely constituted by microbial diversity. It is well understood that different ecosystems play host to different representatives of microbial flora, their population dynamics, and their metabolic outputs. Though there is so much diversity, discussions on metabolism can be easily confined to a few nutrient-containing compounds of the ecosystems. In the past, microorganisms were dispersed in the environment and their roles were poorly understood. It was in the early seventies that we have begun to understand the role of microorganisms in the breakdown of several natural and synthetic compounds. It was a time when the role of microbiologist was confined to understanding cell biochemistry, environmental biostatistics, or some human diseases. As research continued to advance, the importance of microbial consortia emerged as a significant aspect of biodegradation processes. The complex nature of various waste materials presented a challenge that individual microorganisms alone couldn't effectively address. This realization led to the exploration of the collective power of diverse microbial populations to tackle these challenges. In-depth studies revealed that the collaboration between different microorganisms within a consortium offered distinct advantages in adapting to dynamic substrate conditions and the presence of toxic byproducts. These assemblages exhibited enhanced capabilities in the circulation of electrons, facilitating efficient biodegradation processes. The mechanisms behind this synergistic work became clearer with the discovery of message exchange, cross-feeding phenomena, and indirect protection mechanisms against toxins, ensuring the survival and thriving of the microbial consortia. It became evident that these intricate interactions culminated in improved waste management strategies and complete disposal of pollutants. As a result, the scientific community focused a great deal of attention on the exploration of microbial consortia in biodegradation studies, recognizing their potential for revolutionizing waste treatment practices. An essential component influencing the success of microbial consortia is the vast microbial and metabolic diversity found on our planet. Microbes contribute significantly to the biodiversity of ecosystems, and their population dynamics and metabolic outputs vary across different habitats. While microbial diversity is abundant, discussions surrounding metabolism primarily revolve around a select few nutrient-containing compounds prevalent in ecosystems. In the past, the role of microorganisms in environmental processes was clouded by limited understanding. They were simply dispersed throughout the environment, with their precise functions and capabilities remaining elusive. However, in the early seventies, a paradigm shift occurred as researchers began unraveling the intricate involvement of microorganisms in the breakdown of natural and synthetic compounds. This pivotal moment marked the expansion of the microbiologist's role beyond cell biochemistry, environmental biostatistics, or the study of human diseases. The recognition of microorganisms as key players in biodegradation processes opened new avenues for scientific exploration, enabling a deeper comprehension of their functionalities and contributions to ecosystem balance and sustainability. In recent years, researchers worldwide have increasingly recognized the significance of microbial consortia in the field of biodegradation. The collective efforts of diverse microbial populations have proven to be highly effective in addressing the complex nature of various waste materials. Unlike individual microorganisms, which are often unable to adequately tackle the challenges posed by these wastes, microbial consortia have emerged as powerful entities capable of efficiently degrading pollutants. Through extensive studies and experimentation, scientists have shed light on the mechanisms underlying the success of microbial consortia. It has been revealed that the collaborative nature of these assemblages enables them to adapt rapidly to changing substrate conditions, counteract the presence of toxins, and optimize electron circulation. These synergistic interactions are facilitated through the exchange of messages, cross-feeding, and indirect protection mechanisms, all of which contribute to the survival and proliferation of the microbial consortia. The remarkable efficiency of these interactions has led to improved waste management practices and the complete disposal of pollutants. Consequently, microbial consortia have become a subject of great interest within the scientific community, as researchers recognize the transformative potential of these entities in the field of biodegradation. Another critical factor influencing the success of microbial consortia is the vast array of microbial and metabolic diversity found across the planet. Microbes play a pivotal role in shaping the biodiversity of ecosystems, with their population dynamics and metabolic outputs varying significantly between different habitats. Despite the abundance of microbial diversity, discussions surrounding metabolism often focus on a limited selection of nutrient-containing compounds that are prevalent within ecosystems. In the past, the functions and capabilities of microorganisms in environmental processes remained largely elusive, as their roles were poorly understood and they were dispersed throughout the environment. However, a paradigm shift occurred in the early 1970s, as researchers began to unravel the intricate involvement of microorganisms in the breakdown of both natural and synthetic compounds. This breakthrough marked a turning point in the understanding of microbiology, as scientists began to recognize the profound impact of microorganisms in biodegradation processes. The role of microbiologists expanded beyond the realm of cell biochemistry, environmental biostatistics, and the study of human diseases, as their focus shifted towards comprehending the pivotal role of microorganisms in shaping ecosystem balance and sustainability. Today, the exploration of microbial consortia and the role of microbial diversity in biodegradation research represent areas of immense scientific curiosity and potential. By harnessing the collective power of diverse microbial populations, scientists hope to revolutionize waste treatment practices, enhance waste management strategies, and pave the way for a more sustainable future. Through continued research and innovation, the transformative capabilities of microbial consortia in biodegradation processes are steadily being unlocked, promising a cleaner and greener world for future generations. (Cao et al. 2022) (Kabaivanova et al., 2022) (Efremenko et al. 2024) (Bhatt et al. 2021) (Jain et al. 2021) (Massot et al. 2022) (Skariyachan et al. 2022) (Chen et al. 2023).

# Chapter - 4

### **Factors Influencing Microbial Activity**

Various factors influence the activity of microorganisms when liquid waste seeps into the subsoil or coarse waste compaction layers. These factors have a significant impact on the overall microbial processes and can determine the fate of valuable substances or pollutants released from the waste. The decomposition of moisturized or dry waste is a slow process that aims to reduce the release of these substances. However, this process can also affect the availability of heavy metals to plant and animal organisms in the surrounding environment. Aeration plays a crucial role in determining the accessibility of heavy metals, as it can either facilitate or hinder their interaction with microorganisms. The environmental conditions, such as temperature, moisture, oxygen concentration, and pH value, greatly influence the microbial activity and composition. Temperature is especially important for the activity of microorganisms responsible for the decomposition of waste materials. The suitable temperature in the center of a household waste deposit is necessary to maintain optimal microbial activity. Higher temperatures promote efficient decomposition, while lower temperatures may slow down the process. Additionally, moisture levels impact microbial activity, with an optimal range providing favorable conditions for microorganisms to thrive. Another independent group of factors includes micro-moisture, oxygen concentration, and pH value. Micro-moisture is quantitatively determined by measuring the microbial mass after drying small quantities of waste at 105 °C until a constant weight is achieved. This measurement helps assess the water content and availability for microorganisms. The presence of microaerophils is increasingly observed in anaerobic areas, indicating the significance of oxygen concentration for microbial processes. Adequate oxygen levels promote aerobic decomposition, while anaerobic conditions favor the growth of different types of microorganisms. The pH value also plays a crucial role, especially in the proximity of "acidic heavy metal scorification." Certain microorganisms thrive in acidic environments, while others prefer neutral or alkaline conditions. The pH level affects the microbial community composition, which in turn influences the breakdown of waste materials. Proper monitoring and regulation of pH levels can help optimize composting or waste management processes. Water requirement estimation is essential to ensure efficient waste management. The amount of water required per ton of waste, considering the yard temperature and heat generated by microbial activity, can be calculated to optimize waste decomposition. Adequate moisture levels are necessary to support microbial growth and activity. However, excessive water content can lead to anaerobic conditions or leachate generation, which pose challenges in waste management. By monitoring the microbial and biochemical status of selected waste substrates in landfills or temporary storages, valuable knowledge can be obtained to make informed decisions regarding composting, fermentation, landfill rejection, incineration, or storage. Regular analysis and assessment of microbial activity can aid in determining the effectiveness of waste management strategies and identifying any necessary adjustments or improvements. It is worth noting that even a larger, well-packaged, and pressed mix of food and kitchen waste, along with other celluloses and textiles, does not guarantee successful composting. Such a waste mixture may contain a high percentage (up to 5%) of contaminants, making it unsuitable for composting. Instead, it requires high-level waste incineration protection due to contamination with food waste. Proper segregation and identification of waste streams are crucial to ensure appropriate treatment and disposal methods. Some consultants suggest the use of specific types of microorganisms, such as "Chloro organic killermicrobials" including nitrifying bacteria, Guticthyodermitterer, Industrial bacteria, Lactobacillus, Actinomycetes, etc. These microorganisms can be closely monitored and contracted for the proper management of German Biowaste (category III) in flasks. Implementing specific microbial inoculants can enhance the decomposition process and aid in the transformation of biowaste into valuable organic matter, following legal guidelines and regulations. To meet legal requirements, the disposal of German Biowaste (category III) must adhere to specific regulations. This waste must be deposited for up to 2 years below fertilizer and above the sewage sludge law, eventually becoming valuable farmyard manure. Strict compliance with regulations is crucial to safeguard the environment and promote sustainable waste management practices. Failure to comply with regulations can result in fines for informal landfill owners and potential harm to ecosystems. The impact of "Artificial dammblbrom" on microorganisms in "Grenzuferdeponien" becomes evident through the drying behavior observed in our measuring system. This artificial substance, when present in landfill areas, can influence the moisture content and microbial community dynamics. The drying process and the subsequent analyses provide insights into the effects of this artificial substance on the microbial community in these specific landfill areas. Understanding these effects is essential for assessing the overall impact on waste decomposition and ecosystem health. Continuous monitoring and evaluation of artificial substances in landfill environments can contribute to better waste management practices and minimize potential risks to the environment and human health. (Di *et al.* 2020) (Hantoko *et al.* 2021) (Yousefloo & Babazadeh, 2020) (Ugwu *et al.*, 2020) (Khan *et al.*, 2022) (Ding *et al.* 2021) (Wang *et al.*, 2021) (Ahmad *et al.*, 2020).

### 4.1 Temperature

Temperature is a vital and extremely influential environmental factor that exerts a significant impact on the activity, behavior, and overall function of microorganisms. In general, the temperature level serves as a critical and informative indicator of the rate at which organic matter undergoes biodegradation through essential microbial metabolic processes. As per the comprehensive and enlightening standards outlined by the highly esteemed International Union of Pure and Applied Chemistry (IUPAC) in the year 2002, there exist four distinct and noteworthy temperature ranges that intricately and profoundly influence the dynamic world of microbial activity. These temperature ranges encompass a wide array of fascinating microorganisms, beginning with the intriguing and resilient psychrophilic microorganisms that exceptionally thrive and excel in temperatures below the commendably low threshold of 20.0 °C. These extraordinary organisms have uniquely adapted to conquer and flourish in frigid and inhospitable environments, showcasing their extraordinary ability to operate and thrive in extremely cold conditions. On the other end of the temperature spectrum, we have the captivating psychrotrophic microorganisms, which display an unequivocal, unmistakable, and quite intriguing preference for temperatures above the noteworthy milestone of 20. 0 °C. These remarkable microorganisms have successfully mastered the art of surviving and thriving in relatively higher and more amicable temperature settings compared to their psychrophilic counterparts. Additionally, we encounter the fascinating mesophilic microorganisms that possess the remarkable ability to thrive and prosper within the alluring and moderate temperature range of 25. 0-40. 0 °C. These microorganisms, often referred to as "normal" aero- or anaerobic bacteria, demonstrate their impressive adaptability and versatility by efficiently operating and carrying out their vital functions in this optimal temperature range. They play a vital role in various biological processes and serve as a cornerstone in the intricate web of life on Earth. As we push the boundaries of temperature even further, we discover the awe-inspiring world of thermophilic microorganisms that relentlessly flourish and thrive in temperatures ranging from an incredibly warm 45. 0-60. 0 °C. These remarkable creatures showcase their extraordinary adaptability and resilience to survive and function optimally in what can only be described as extreme heat and climatic conditions. However, the pinnacle of temperature adaptation and endurance lies within the realm of hyperthermophilic microorganisms. These exceptionally rare and specialized microorganisms experience optimal growth temperatures that transcend human comprehension, reaching unparalleled heights of performance below the astounding and mind-boggling threshold of 80.0 °C. Their ability to thrive and survive in such extreme heat is nothing short of awe-inspiring and continues to captivate the scientific community. The profound and pervasive role played by temperature in effectively managing all forms of organic waste cannot be understated. In a groundbreaking study, Juretschko and his esteemed colleagues (2004) emphatically highlighted and emphasized that the temperature of the bioreactor exerts an astonishingly strong and decisive influence on the production of end products during the highly significant anaerobic treatment process. The temperature, in all its complexity and dynamic nature, has a profound and compelling impact on the prevalence and distribution of acetogenesis at moderate temperatures, while concurrently facilitating the reduction of CO2 to CH4, which, in turn, predominates and governs the higher experimental temperatures. Temperature, therefore, undeniably plays a pivotal and indispensable role in optimizing the metabolic rate of the diverse and intricate microbial community engaged in a plethora of essential methods and approaches to organic waste disposal. Successfully and meticulously optimizing the temperature, being an integral and essential requirement, becomes an arduous and challenging task necessary to achieve not only efficient but also expeditious waste disposal. The mastery of temperature within this realm is, without a doubt, an extraordinary and indispensable endeavor that warrants utmost focus and relentless pursuit. Moreover, throughout history, temperature has proven to be an invaluable weapon and tool in combatting and subduing the relentless onslaught of pathogens lurking within sewage sludge. This remarkable feat was brilliantly and triumphantly exemplified by the groundbreaking employment and utilization of Bostock's original and innovative fast-in vessel composting technology. In this groundbreaking methodology, temperature was wielded and harnessed to wage a relentless war against pathogens, effectively eradicating and neutralizing them with astounding precision and efficacy (Meo and esteemed colleagues, 1991). In conclusion, temperature undeniably exerts a tremendous and far-reaching influence on the activity, behavior, and overall function of microorganisms, significantly dictating and molding the rate of biodegradation and microbial metabolic processes of organic matter. The distinct temperature ranges meticulously and expertly highlighted by the prestigious institution of IUPAC not only serve as invaluable and irreplaceable markers but also provide us with essential insights into the intricate world of microbial growth preferences. Furthermore, the optimization of temperature, a complex and multifaceted endeavor, remains an indispensable and vital aspect in the realm of efficient organic waste management, continually unlocking new and innovative methods, such as composting technologies, to combat and neutralize the persistent and ever-evolving threat of pathogens within sewage sludge. (Shen *et al.* 2020) (Li *et al.* 2022) (Kebede *et al.* 2021) (Tamnou *et al.* 2021) (Zhang *et al.*, 2021) (Yuan *et al.* 2020) (Nie *et al.* 2021) (Chen *et al.* 2022).

### **4.2 Moisture Content**

Microorganism activity is possible because most of them have motor systems. The many movements of microorganisms cause substances from the environment to come into contact with cells. Microorganisms feed to consume these substances and obtain energy for building, renewing, and dividing. So they contribute to the disposal of waste. They further multiply, producing more offspring of themselves when enough food arouses suspicion. For maintenance activities, enzyme and energy are absolutely necessary. These are all important in the role of microorganisms in waste disposal. To contribute to the way of bacterial waste disposal, it is necessary to maintain basic microbial enzyme function. Generally, the moisture content depends on the waste itself or is maintained artificially in the process of disposal. The moisture content of the waste to be treated should be controlled by cooling in urban areas where rainfall is small. To dispose of waste with moisture content, the temperature drop should be suppressed and at the same time, the waste should be cooled and the heat of the fermentation of compost should be suppressed. Microorganisms are mainly involved in waste conversion, i. e. in turning waste or degraded biodegradable conversion catalyst. For effective biological waste degradation through microbial activities, the waste ecosystem must maintain the optimum moisture content, which should range from 25% to 50% solids. This moisture is very important to facilitate microbial survival, to maintain the physiological activities of enzymes, and to activate the metabolism of microbial cells. If the moisture content is too low, the viability of the microbial cells is drastically reduced and the water-water network between cells tends to break, consequently leading to severely reduced cell metabolism. Therefore, water is required for the microorganism to provide the necessary transport system for nutrients and to export the waste materials. The reduction or elimination of moisture content in the waste system will minimize the heterogeneity of degradation process rates. Biological activity is based on the liquid film surrounding the active sites on or in the particle, thereby providing a continuous feed source for the bacteria. The high liquid content also provides the ions required for bacterial activity and the dispersant. Text expansion: Microorganism activity is possible because most of them have motor systems that allow them to move in various directions. These movements are essential for their survival as they enable substances from the surrounding environment to come into contact with their cellular structures. Microorganisms feed on these substances, breaking them down to obtain the energy they need for processes such as building new cells, repairing damaged ones, and undergoing cell division. In this way, microorganisms play a crucial role in the disposal of waste materials. As microorganisms consume the available resources, they undergo reproduction to ensure the continuity of their species when sufficient food is present. Enzymes and energy play vital roles in these maintenance activities, allowing microorganisms to efficiently break down waste substances. The involvement of microorganisms in waste disposal is therefore dependent on maintaining the fundamental functions of microbial enzymes. The moisture content in waste materials is generally determined by the characteristics of the waste itself or is artificially regulated during the disposal process. In urban areas with low rainfall, controlling the moisture content of the waste to be treated becomes essential. Cooling methods can be employed to maintain appropriate moisture levels in such cases. By suppressing temperature fluctuations and providing sufficient cooling, the composting process can be optimized, ensuring effective waste disposal. Microorganisms primarily contribute to waste conversion by acting as catalysts in the degradation of biodegradable materials. Their activities facilitate the transformation of waste substances into simpler forms that can be readily assimilated back into the ecosystem. To achieve efficient biological waste degradation through microbial activities, it is crucial to maintain the optimal moisture content in the waste ecosystem. This moisture range should ideally be between 25% and 50% of the total solids in the waste. Maintaining adequate moisture content is vital as it supports the survival of microorganisms within the waste ecosystem. It enables the physiological activities of enzymes to proceed smoothly and activates the metabolic processes of microbial cells. Insufficient moisture content poses a significant risk to the viability of microbial cells, leading to a drastic reduction in their capacity to function optimally. Additionally, when water levels are too low, the network of intercellular connections tends to weaken, further impeding cellular metabolism. Therefore, the presence of water is crucial for microorganisms, allowing them to transport essential nutrients and remove waste materials effectively. Reducing or eliminating moisture content in the waste system will result in a more homogenous degradation process, minimizing the variability in degradation rates. The biological activity of microorganisms is heavily reliant on the presence of a liquid film that surrounds the active sites on or within particles. This liquid film acts as a continuous source of nutrients for the bacteria, ensuring their sustenance and promoting bacterial activity. Moreover, the high liquid content provides the necessary ions required for bacterial metabolism and acts as a dispersant, facilitating efficient waste degradation. (Srivastava *et al.* 2020) (Kumar *et al.* 2022) (Rastogi *et al.*, 2020) (Hoang *et al.* 2022) (Chukwuma *et al.* 2021) (Apollon *et al.* 2022) (Vyas *et al.*, 2022).

### 4.3 pH Level

The pH level, which refers to the measure of acidity or alkalinity, has a significant influence on the functioning of microorganisms. Changes in pH can result in varying degrees of adaptability, from colonization to the prevalence of different species or groups of microorganisms. Furthermore, microorganisms possess the ability to manipulate the pH levels of their surrounding environment through the release of acidic or alkaline metabolites. This capacity to alter pH levels plays a crucial role in the efficiency of enzymes. It has been established that specific pH levels can optimally impact the activity of various groups of enzymes. Considering these significant findings, it becomes imperative to closely monitor and regulate pH levels throughout the processing of biological waste. When biological waste is present, the pH level may experience fluctuations due to the metabolic activities of microorganisms. Therefore, it is crucial to ensure that the resulting pH level remains within the desired range. In order to influence and maintain the pH level of complex systems during the degradation process of waste, such as food and yard waste (referred to as F and YM waste) in landfills, human intervention may be necessary to prevent the pH level from surpassing a neutral state (pH  $\approx$  7. 0). The degradation of organic substances within these types of waste often leads to acidification and the exchange of reaction products, including the generation of organic acids. Consequently, having knowledge of the pH level proves to be advantageous. It allows for the establishment of proper pre-treatment conditions and the determination of the progression of the degradation process. Additionally, such knowledge opens up the possibility of making technical improvements in fermentation processes and adapting the mixed microbial cultures involved in the acidification processes to accommodate varying pH conditions. By comprehending and effectively managing pH levels, we can ensure the efficient and effective breakdown of organic waste while minimizing any potential negative environmental impacts that may arise. Understanding the impact of pH levels on microbial activity is essential not only for waste management but also for various fields such as agriculture, biotechnology, and environmental sciences. The knowledge of pH's influence can aid in the development of strategies to enhance the growth of beneficial microorganisms while inhibiting the proliferation of harmful ones. Furthermore, pH regulation can promote the production of desirable compounds and metabolites in industrial and biotechnological processes. With the advances in technology, monitoring and controlling pH levels has become more accessible and efficient. Automated systems and sensing devices are available to accurately measure and maintain pH levels in different environments. These tools allow for real-time monitoring, enabling prompt interventions if pH levels deviate from the desired range. Ongoing research continues to explore the intricate relationship between pH and microbial activity, shedding light on new applications and potential discoveries. As we delve deeper into understanding the complexities of pH's impact on microorganisms, we can further optimize various processes, including waste treatment, bioremediation, and the development of sustainable agricultural practices. By harnessing the power of pH regulation, we can unlock endless possibilities for advancements in science, technology, and environmental stewardship. (Ashkan et al. 2021) (Rodrigues et al. 2021) (Kujawa et al. 2021) (Siedentop et al. 2021) (Chen et al., 2021) (Li & Liu, 2021) (Danilova & Sharipova, 2020) (Guisan et al. 2020).

# Chapter - 5

### **Applications of Microorganisms in Waste Management**

In the disposal of biological waste, microbiological processes can play either a highly desirable or highly undesirable role, depending on the context. For example, in the production of human food, microbiological fermentation of grain or flour can be highly beneficial. On the other hand, the ingestion of crops by various species of bacteria, fungi, or yeasts can be extremely detrimental. Among the methods used for disposing of solid waste, sanitary landfills are commonly used. These landfills utilize the microbiology of high heat, desiccation, and the resulting tree ring-like expansion of microbial generations. This intricate process can be likened to a captivating stop-motion apocalypse, as the communities of microorganisms are drastically altered in both proportion and species. The demise of certain organisms that cannot withstand conditions that effectively eliminate pathogens and animals leads to remarkable changes in these microbial communities. Microbiology also plays a pivotal role in waste management through composting. Composting involves the intricate decomposition of waste plant material to produce fertile mulch and nutrient-rich soil. This comprehensive process can include the decomposition of food waste, yard clippings, and other bio-wastes. The resulting value generated from composting can be effectively utilized by spreading it on farm fields or selling it to home gardeners. Soil microorganisms, both macro- and microorganisms, have evolved to ingeniously break down the stubborn carbohydrate and lignin-based compounds present in plant cell walls. Consequently, these resilient plant cell walls can be effectively broken down in any environment with a certain level of moisture, ranging from lush tropical forests and vibrant estuarine marshes worldwide to a neglected pile of lettuce in a college student's overloaded refrigerator. In the compost pile, dead microbial biomass can accumulate up to a staggering eight pounds per kilogram of actively decomposing carbonbased food. This remarkable accumulation truly highlights the significant impact of microbial activity in facilitating the intricate decomposition process. Microbial activity not only unlocks the potential of waste management but also showcases the marvels of nature's resilience and adaptability. Understanding and harnessing the power of these microscopic organisms can lead to new breakthroughs in waste disposal and environmental sustainability. By exploring the complex interactions between microorganisms and waste materials, scientists and researchers can uncover innovative solutions that promote a healthier planet for future generations. Through continued study and innovation, the field of microbiology holds the key to unlocking a brighter and more sustainable future. (Chetri & Reddy, 2021) (Etim *et al.*, 2022) (Mironov *et al.* 2023) (VU, 2020) (Reynolds, 2022) (Hu *et al.* 2022) (Berenjkar, 2022).

### 5.1 Composting

Composting is a biological process that utilizes a wide range of diverse groups of microorganisms to effectively decompose organic matter. The primary microorganisms involved in this intricate process consist of bacteria, actinomycetes, fungi, protozoa, nematodes, and other microorganisms that are present in smaller proportions. The remarkable process of composting has the ability to transform various waste materials, including food scraps, yard waste, agricultural residues, animal manure, and even sludge from wastewater treatment plants into valuable resources that harbor immense commercial potential. The value that is added to these waste materials becomes evident in the form of agronomical garden and soil amendments, as well as the production of high-quality organic fertilizers that efficiently release vital nutrients for plant growth, all while contributing to bioremediation efforts. When we examine the composition of a composting substrate, it primarily consists of a wide range of organic compounds, such as carbohydrates, proteins, fats, and lignin, that serve as food sources for the nourishment of microorganisms. In some cases, a small quantity of NH3 (ammonia) and other inorganic minerals may also be present, providing additional nutrients for microbial activity. However, it is crucial to note that by incorporating these compounds into the soil subsequent to the composting process, the nutrient status of the soil experiences a substantial improvement. Moreover, these organic materials also play a significant role in enhancing both the physical and biological properties of the soil. As a consequence of the ability of microorganisms to produce substances that effectively bind soil particles, the overall structure of the soil is consequently improved. This improvement leads to an increase in the soil's water holding capacity, drainage capabilities, nutrient availability, and aeration, ultimately creating a more conducive environment for plant growth. Additionally, the population of earthworms within the soil also witnesses a notable increase, further promoting soil health and fertility. Thus, due to their remarkable biological properties and ability to improve soil quality, these organic amendments are commonly referred to as soil conditioners. They not only provide essential nutrients but also contribute to the overall soil ecosystem, promoting biodiversity and ecological balance. Another essential aspect to consider when contemplating the vital role of microorganisms in the disposal of biomaterials is the parallel existence of microbial ecology in composting, which bears resemblance to solid biological treatment processes. Through the process of aerobic composting, in which oxygen is actively supplied to the composting materials, organic waste is substantially reduced within a relatively shorter time frame, thereby minimizing the future necessity for the addition of inorganic fertilizers. This not only helps in waste management but also reduces the dependence on synthetic chemicals, making it an environmentally friendly practice. The content of organic matter typically varies between 25.3% to 67% in compost, signifying its potential as a vital source of soil organic carbon, which plays a crucial role in soil fertility and carbon sequestration. Further emphasizing its agricultural value, the nutrient content (NPK) of compost typically ranges from 0. 9% to 3. 39% for nitrogen (N), 1. 33% to 2. 26% for phosphorus (P), 0. 88% to 2. 25% for potassium (K), and 0. 29% to 0. 65% for magnesium (Mg), respectively. Additionally, compost contains a rich array of micronutrients such as calcium, iron, manganese, zinc, copper, and others, which are essential for healthy plant development and overall crop productivity. Studies have indicated that compost possesses an impressive Organic Matter Recovery Ratio (OMRR) falling within the robust range of 84% to 75%, further highlighting its potential as a sustainable resource for soil improvement and waste management. Overall, the expanded potential and multifaceted benefits of compost make it an invaluable resource in the field of agriculture and soil management. Composting not only provides an effective means of waste disposal but also contributes to the sustainable development of agricultural practices, supporting the growth of healthy plants, the conservation of soil quality, and the preservation of natural resources for future generations to come. Its application helps to close the nutrient loop, reduces greenhouse gas emissions, protects water quality, and fosters a more sustainable and resilient agricultural system. Embracing composting practices is a step towards building a healthier, more environmentally conscious, and prosperous future for our planet. (Ayilara et al., 2020) (Palaniveloo et al. 2020) (Amuah et al. 2022) (Sayara et al., 2020) (Meena et al. 2021) (Wang et al. 2020) (Rastogi et al., 2020).

#### **5.2** Bioremediation

Harmful substances that have the potential to pollute and harm the environment, rather than simply waiting for their natural process of

degradation, can now be efficiently managed and eliminated with the help of microorganisms. This groundbreaking technique, known as bioremediation, involves the application of microorganisms to mitigate or even eradicate the ecological impact caused by pollutants. The effectiveness of bioremediation lies in the microbial activity that breaks down the toxic substances, leading to the complete transformation of organic compounds into harmless minerals and the total elimination of pollutants from the environment. One of the remarkable advantages of microbial bioremediation is its remarkable suitability for addressing insoluble or insolubilized compounds like chlorinated elemental hydrocarbons (including polychlorinated biphenyls, polychlorinated dibenzofurans, and dibenzo-p-dioxins), specific types of radioactive waste, fuel oils, and even antiparasitic agents. Furthermore, the gentle application of this innovative technology in dealing with pollutants that directly affect hosts and their microbial flora yields significantly safer and more reliable results within a relatively short period of time compared to other conventional methods used to combat pollution caused by biological waste. This specifically refers to the pollution resulting from human activities that adversely impact the ecological environment. Dealing with the degradation of land, water, and air caused by organic pollutants is one of the major environmental challenges that our society faces today. The interest in addressing the environmental problem related to organic micropollutants has grown exponentially due to the increase in the number of chemicals introduced into the biosphere, as well as the advancements in the fields of chemistry, biological-clocking, and biochemistry. In this context, the field of biotechnology has emerged as a crucial player, identifying alternative chemicals that pose significant hazards and thus pose a profound threat to industrial and agricultural sectors. Consequently, there has been an alarming surge in pollution of land, water, and air attributed to this particular category of chemicals. Microbial biotechnology, which represents a comprehensive approach incorporating various techniques such as biochemistry, microbiology, genetics, and environmental protection, aims to harness the enormous potential of different microbial strains resulting from these techniques. By implementing this sophisticated technology package, tremendous progress can be achieved in remediating polluted environments and creating a path towards a greener and more sustainable future. The utilization of microorganisms in bioremediation establishes a symbiotic relationship with the environment, where these microorganisms play a pivotal role in cleansing and rejuvenating the affected areas. Through their enzymatic activities, these microorganisms break down complex organic molecules into simpler and harmless compounds, effectively neutralizing the detrimental effects of pollutants. Additionally, by stimulating the growth and activity of these beneficial microorganisms, bioremediation creates a self-sustaining ecosystem that can perpetually combat pollution and maintain ecological balance. Moreover, bioremediation is a versatile and adaptable technique, capable of addressing a wide range of environmental issues. Whether it be the remediation of oil spills, the reduction of heavy metal contamination, or the restoration of soil fertility, bioremediation provides an effective and ecologically friendly solution. This is made possible through the integration of specialized microorganisms that possess the unique ability to degrade and detoxify hazardous substances. Harnessing the power of nature, bioremediation presents a sustainable alternative to traditional cleanup methods, which often involve expensive and environmentally harmful procedures. Bioremediation also offers significant economic benefits. By eliminating the need for expensive equipment and minimizing the use of chemicals, bioremediation reduces the overall cost of environmental cleanup projects. Additionally, the employment of local microorganisms and the promotion of their growth in contaminated sites can create new job opportunities and stimulate economic development in affected areas. This not only addresses the immediate environmental concerns but also contributes to the long-term socio-economic well-being of communities. Furthermore, bioremediation proves to be a scalable and feasible solution for both smallscale and large-scale environmental challenges. From small-scale applications in residential or commercial sites to large-scale projects involving entire ecosystems and industrial complexes, the principles of bioremediation can be adapted and tailored to meet the specific needs of different situations. This flexibility enables the widespread implementation of bioremediation strategies, ensuring that pollution mitigation efforts are accessible and effective in diverse scenarios. In conclusion, bioremediation stands as a groundbreaking technique that revolutionizes the way we approach and address environmental pollution. By harnessing the potential of microorganisms, bioremediation has the power to effectively mitigate and eliminate harmful substances, transforming them into harmless compounds and restoring the balance of ecosystems. With its proven effectiveness, adaptability, and economic benefits, bioremediation offers hope for a greener and more sustainable future. By embracing this innovative technology, we can pave the way for a world where pollution is minimized, ecosystems thrive, and humanity coexists harmoniously with nature. (Pal et al. 2020) (Sharma et al. 2021) (Saravanan *et al.*, 2023) (Ayilara & Babalola, 2023) (Singh *et al.* 2020) (Chaudhary et al. 2023).

## Chapter - 6

## **Challenges and Limitations**

Biological waste (biowaste) in terrestrial and aquatic environments is a major challenge to human health and the ecosystem. Disposing of organic wastes generated during food production, pharmaceutical, medical, and agricultural industries is a critical necessity. Although composting, landfilling, and incineration are the common techniques for biowaste disposal, a suitable and economical approach with minimal environmental impact is yet to be realized due to the presence of densified, non-biodegradable derivative molecules and bioaccumulation of toxic compounds. The resistant metal ions present in the dumps fortified as nano-biocontaminants absorb stress-induced toxic volatile organic compounds (VOCs) released from the landfill sites. Consequently, these contaminants exert several mild-to-severe afflictions including carcinogenic reactions, dermic ailments, cardiovascular complications, neurological disorders, affect immune and reproductive functions, and cause chronic diseases due to the accumulation even during small exposures to low levels of these contaminants. Disposal of some types of biological waste is also limited by the toxicity and omnipresence of endocrine-disrupting chemicals (EDCs). EDCs present in the chemical, pharmaceutical, and pesticide industries, associated agricultural runoff, and plastic waste can mimic natural hormones, such as estrogen, and interfere with the endocrine activities in many organisms, including humans, leading to several sexual abnormalities, early puberty, cryptorchidism and hyperplasia, uterine fibroids, breast, testicular, and prostate cancer. These hormone-like compounds are extremely lipophilic and bioaccumulate and biomagnify in lipid-rich tissues in the food chain. Hence, a proper pathway and effective methods should be devised for the disposal of food processing wastes, industrial biosludge and slurry from stock farm management, food waste fed to animals and fish, thickening rejects or dewatered excess from biological wastewater treatment plant (BWTP), and wastewaters including sewage sludge. In order to address these pressing issues, it is crucial to develop innovative and sustainable strategies for the disposal of biowaste. Furthermore, there is a need for increased research and investment in environmentally friendly technologies that can efficiently break down and eliminate the resistant molecules and toxic contaminants present in biowaste. By implementing such approaches, we can mitigate the health risks associated with the improper handling and disposal of biowaste while minimizing the negative impact on the environment. One potential solution is the utilization of advanced biotechnological methods and bioremediation techniques to degrade and detoxify biowaste. These methods involve the use of specialized microorganisms that have the ability to break down complex organic compounds into harmless byproducts. Additionally, the development of engineered nanomaterials and nanotechnology-based systems can aid in the efficient removal and neutralization of toxic molecules from biowaste. Furthermore, the implementation of strict regulations and policies regarding the proper disposal and management of biowaste is imperative. Governments and regulatory bodies should enforce laws that require industries and individuals to adhere to specific guidelines for the handling, storage, and transportation of biowaste. Additionally, the establishment of dedicated biowaste treatment facilities can help ensure that proper protocols are followed and that the waste is effectively processed and disposed of. Education and awareness campaigns should also be conducted to inform and educate the public about the dangers of improper biowaste disposal and the importance of adopting sustainable practices. By promoting a culture of responsible waste management, individuals can contribute to the overall reduction of biowaste and its adverse effects on human health and the ecosystem. In conclusion, the proper disposal of biowaste is crucial for the protection of human health and the environment. Through the development and implementation of innovative technologies, stringent regulations, and educational initiatives, we can effectively tackle the challenges posed by biowaste. By taking proactive measures, we can strive towards a sustainable future where the impact of biowaste on our ecosystem is minimized, and the health and well-being of both humans and the natural world are preserved. (Thirumalaivasan et al. 2024) (Patel et al. 2022) (Saxena et al., 2020) (Shivalkar et al. 2021) (Sharma2020) (Hakeem et al., 2020).

### **6.1 Resistance to Degradation**

Disposal of biological waste is primarily reliant on the microbial conversion of complex organic material into cell mass, which usually results in the production of carbon dioxide, methane, water, hydrocarbons, and a wide array of metabolic products such as alcohols, esters, carboxylic acids, and carbohydrates. Waste materials composed predominantly of energetic structures experience rapid decomposition by microorganisms. However, shell and bone fragments, along with other challenging materials like additives in cat litter, are not as easily degradable. Remarkably, even waste products

that are entirely indigestible for microorganisms can, to some degree, undergo degradation. For instance, animal hair, which shares the same composition as textiles, decomposes relatively quickly even within the protected environment of a deceased animal's body in contact with sterile cat litter for extended periods. Additionally, given the proper conditions, plastics may eventually become accessible to microorganisms if stray chemicals disrupt the polymeric matrix that makes them resistant. Microbial resistance, in most cases, involves overcoming the accumulation of degradation products and the kinetics of solubilization, rather than the recalcitrance of the material itself. Various mechanisms have been described to explain resistance to degradation, including broad energy-consuming processes such as pH adaptations (to facilitate acidic digestion), water exclusion through biofilm formation, or penetration via encoded enzymes and self-developed exo-structures. Coping with such diverse and adaptable structures is the specialty of phacodegradation, a process in which plastic micro-particles are made digestible to organisms in their natural environment. In some respects, this can be akin to the enzymatic assault on the resilient protein matrix surrounding the eggs that parasites may develop within their hosts, as has been observed in the case of the human roundworm in dogs. Since the secretion of collapse enzymes can occur much earlier than the spatial location determination, these enzymes can be released before the digesting bacteria or fungi even reach their intended target. This method of staining parasites is employed by methylotrophic bacteria. The utilization of phaco-degradation in waste management processes has proven to be highly effective. By harnessing the unique abilities of microbial organisms, even seemingly non-degradable waste materials can be broken down and transformed. In fact, the impressive adaptability of microorganisms allows for the decomposition of a wide range of substances, including those that are traditionally considered challenging or resistant to degradation. One fascinating example of this adaptability is seen in the rapid decomposition of animal hair. Despite its composition being similar to textiles, animal hair decomposes relatively quickly, especially when in contact with sterile cat litter for extended periods. This highlights the remarkable capabilities of microorganisms to break down even seemingly indigestible materials. Furthermore, under the appropriate conditions, plastics can also become accessible to microorganisms. If stray chemicals disrupt the polymeric matrix that gives plastics their resistance, microorganisms can eventually degrade them. This process involves the microorganisms overcoming the accumulation of degradation products and the kinetics of solubilization, rather than the inherent recalcitrance of the plastic material itself. To facilitate the degradation of diverse and adaptable waste structures, mechanisms such as pH adaptations, biofilm formation, and the production of encoded enzymes and self-developed exo-structures have been identified. These mechanisms allow microorganisms to cope with the challenges posed by different types of waste materials. Phaco-degradation, a specialized process, plays a pivotal role in waste management. It involves making plastic micro-particles digestible to organisms in their natural environment. This process is comparable to the enzymatic assault on the resilient protein matrix surrounding the eggs developed by parasites within their hosts. For instance, in the case of the human roundworm in dogs, collapse enzymes are secreted much earlier than the spatial location determination. This strategic release of enzymes ensures that the targeted degradation begins promptly, even before the digesting bacteria or fungi reach their intended destination. Interestingly, methylotrophic bacteria employ a similar method of staining parasites by releasing enzymes before reaching their target. This highlights the diverse strategies employed by microorganisms in their quest to break down various substances. In conclusion, the expansion of waste degradation techniques, such as phaco-degradation, showcases the remarkable capabilities of microorganisms. Through their adaptive mechanisms, they can transform nondegradable waste materials into digestible compounds. This knowledge opens up new possibilities for effective waste management and highlights the importance of understanding and harnessing the power of microorganisms in environmental sustainability efforts. (Zhang et al., 2021) (Srivastava et al. 2020) (Pan et al., 2021) (Salehizadeh et al., 2020) (Okoye-Chine et al. 2022) (Das et al. 2020).

### **6.2 Toxicity of Certain Wastes**

Many of the toxic substances are also present in biological wastes or are released from them into the environment. Such toxicity can pose inhibitory effects on the final removal stages of microbial disposal processes. To avoid the undesirable toxic effects, waste may be initially pre-treated. However, before any new pre-treatment method can be practically used, the toxic potential of the waste in question must be determined. The toxicity and the characteristics of the substances responsible are necessary prerequisites to predict possible consequences of the final disposal of the ashes. This is especially important when the percentage of some toxic substances present in the ashes is increased by a factor of 100 to 1000 in relation to the percentage present in the original radioactive waste. Waste can be toxic to the microbial organisms living in the disposal system. In waste organic matter that contains toxic substances of natural or anthropogenic origin, leachates become toxic due to substances dissolved in water. In both cases, adaptation of

microorganisms may occur. The most serious case of toxic waste is technogenic waste, but an increase in leachate toxicity is also possible in municipal solid waste. This is where the presence of excessive quantities of certain substances dangerous to humans and microorganisms is connected with the accidental or intentional disposal of waste. Toxic substances have an inhibitory effect on the biological reaction of the fertilizer activity of waste, especially CO2 evolution, as well as on bio-corrosion and corrosion in general. Each identified inhibitory substance has to be eventually removed or at least diluted when the waste is mixed with an extremely high dose of reference waste. Proper pre-treatment, such as the extraction of lead or zinc from the ashes, may hinder the toxicity of the ashes and must be checked thoroughly to ensure their effectiveness in mitigating the harmful effects of the toxic substances. Additionally, the management and control of toxic waste require constant monitoring and evaluation to ensure that any potential risks are identified and addressed promptly and effectively. Therefore, it is crucial to establish robust protocols and guidelines that encompass all aspects of toxic waste management. This includes the development of advanced technologies for waste treatment and disposal, as well as the implementation of strict regulatory measures to prevent the release of harmful substances into the environment. Furthermore, comprehensive education and awareness programs should be implemented to ensure that individuals and industries understand the importance of responsible waste management practices and the potential consequences of improper disposal. Collaboration between governmental bodies, environmental organizations, and industry stakeholders is essential in order to establish effective strategies for the identification, handling, and disposal of toxic waste. By working together, we can minimize the negative impact of toxic substances on human health and the environment, promoting a sustainable and healthier future for generations to come. (Zafar et al. 2022) (Balasundaram et al. 2022) (Bhat & Gogate, 2021) (Sharma et al. 2022) (Nguyen et al. 2021) (Varjani et al. 2022) (Ebrahimian et al. 2023).

# Chapter - 7

### **Future Perspectives**

The present opinion clearly points out the various and remarkable contributions of microorganisms in environmental waste management. In the future, the role of termite gut-rich cellulolytic microbes would be more convincing, and innovative techniques like microbial protein analysis, metaproteomics, and metagenomics would also help us understand the molecular physiology of termite neglect, trash, and wood-related microbes. Since the disposal of organic waste would be more grainage-centric and address smart modern techniques, such as microbial-mediated generation of carbon nanostructures, can give better industrial feedstocks from an environment-based approach. The developments proposed in this paper have looked at the side. Microbe-mediated worm fluids from organic waste for enhanced plant growth also seem promising through sustainable integrated approaches, as the practice of discharging beneficial microorganisms and earthworm complexes on modern waste could also be a very influential method. The development of in-silico-based computational biology tools can help understand the hidden pathogen of environmental issues for granted. Modern smart solar vital biodigestor for waste tight disposal cabinet provides positive results. Readers can inject futuristic opinions and perspectives in various areas of waste management to keep these lighthouses as a launch vehicle for further scientific appreciation. The basic waste management principles, especially in developing countries, are composed of 3R's: reduce, reuse, recycle, and dispose of non-recycled wastes generated by microorganisms, respectively. But the situation is getting more confusing given the imbalance of intermediaries by the commodification of the community. There is also the typical lack of resources in such developing countries. Expanding on this topic, it is important to highlight the practical implications of microorganisms in waste management. Microbes play a crucial role in breaking down organic waste, promoting recycling, and reducing the overall environmental impact. With the advancement of technology, new approaches like microbial protein analysis, metaproteomics, and metagenomics have emerged, enabling us to delve deeper into the molecular physiology of microorganisms involved in waste degradation. One area of particular interest is the role of termite gut-rich cellulolytic microbes. These microbes possess unique enzymes that efficiently break down cellulose, a major component of waste materials such as wood and plant debris. Understanding the molecular mechanisms behind these microbial cellulolytic activities can pave the way for innovative waste management techniques. In addition to enzymatic studies, researchers are also exploring the potential of microbial-mediated generation of carbon nanostructures. By harnessing the metabolic capabilities of certain microorganisms, it is possible to produce valuable carbon-based materials that can serve as industrial feedstocks. This environmentally friendly approach not only reduces waste but also provides sustainable alternatives to conventional manufacturing Furthermore, the integration of microbe-mediated worm fluids into waste management practices shows promise for enhancing plant growth. By utilizing the symbiotic relationship between microorganisms and earthworms, it is possible to transform organic waste into nutrient-rich fluids that promote healthy plant growth. This integrated approach contributes to a circular economy model, where waste is effectively utilized to support sustainable agricultural practices. To address the challenges faced by developing countries in waste management, it is essential to adopt the principles of the 3R's: reduce, reuse, and recycle. Microorganisms play a crucial role in these principles by breaking down non-recycled wastes and facilitating the recycling process. However, it is important to acknowledge the complexity of waste management in developing countries, where resources are often limited and intermediaries may exploit the system for their own gains. To overcome these challenges, the development of in-silico-based computational biology tools can provide valuable insights into the hidden pathogens and environmental issues associated with waste management. By simulating and analyzing various scenarios, researchers can identify potential solutions and optimize waste management strategies. In terms of infrastructure, the implementation of modern smart solar vital biodigestors can revolutionize waste disposal practices. These biodigestors utilize solar energy to efficiently break down waste materials, resulting in minimal environmental impact and positive outcomes. This innovative technology not only reduces the burden on traditional waste disposal systems but also demonstrates the potential for sustainable energy generation. In conclusion, microorganisms and innovative waste management techniques hold great promise in environmental challenges. By understanding the contribution microorganisms, adopting the principles of the 3R's, and leveraging advanced technologies, we can pave the way for a more sustainable future. Opportunities for further research and exploration are abundant, and it is crucial for readers to contribute their futuristic opinions and perspectives to foster scientific appreciation in the field of waste management. (Srivastava *et al.* 2020) (Singh and Shyu2024) (Rastogi *et al.*, 2020) (Ansari *et al.*, 2020) (Iqbal *et al.* 2020) (Kaur, 2020) (Patel *et al.* 2022) (Sagarika *et al.* 2022).

## 7.1 Emerging Technologies

In the light of the ever-increasing production of waste, rapidly advancing urbanization, adverse effects of climate change, and the multitude of other global challenges that we face, it becomes increasingly clear that we must urgently seek out efficient and sustainable methods of waste disposal for the imminent future. Among the vast array of waste management technologies that currently exist, one of the most promising approaches involves the utilization of microorganisms to facilitate the bioprocessing of waste. This innovative technique enables the efficient, swift, and harmless decomposition of complex waste materials, resulting in the production of valuable products eliminating hazardous simultaneously compounds. microbiological oxidation, energy-rich organic substances are broken down, enabling the release of energy that can be utilized for the growth of microorganisms. In essence, any material that can be transformed into a beneficial product by microorganisms can be classified as "waste." Therefore, the bioprocessing of waste can be seen as the conversion of such materials into higher-energy compounds, ultimately leading to the elimination of waste altogether. At present, microbial waste reduction stands as the most widely employed strategy for waste management, involving the complete eradication of waste and the subsequent purification of environmental entities such as water, as well as the retrieval of rare components such as metals and fertilizers from soil and sediment. In this context, we present up-to-date information regarding the diverse array of microorganisms that possess the capability to efficiently degrade all types of waste. Modern bioprocessing of waste represents a highly promising avenue for the management and disposal of various forms of waste. The effectiveness of microbial waste degradation can be significantly enhanced through the provision of favorable conditions and the modification of the waste matrix. Numerous factors that influence microbial waste degradation can be controlled through the implementation of various strategies, which are crucial for ensuring efficient biodegradation. The successful bioprocessing of waste relies on a combination of factors, including the selection of suitable microorganisms, optimization of process conditions, and manipulation of the waste matrix. To ensure efficient waste degradation, it is important to identify and utilize microorganisms that have the capacity to metabolize a wide range of waste materials. These microorganisms possess diverse sets of enzymes that enable them to break down complex organic compounds into simpler forms. By harnessing the metabolic capabilities of these microorganisms, we can effectively convert waste into valuable products. The optimization of process conditions is also crucial for maximizing microbial waste degradation. Factors such as pH, temperature, and oxygen availability can significantly influence the activity and growth of microorganisms. By carefully adjusting these conditions, we can create an environment that is most favorable for the microorganisms to thrive and degrade waste efficiently. Additionally, the modification of the waste matrix can further enhance the effectiveness of microbial degradation. This can be achieved through physical, chemical, or biological pretreatment methods, which aim to break down complex waste structures and make them more accessible to microorganisms. Various strategies can be implemented to control factors that influence microbial waste degradation. For example, the addition of nutrients such as nitrogen and phosphorus can promote the growth of microorganisms and enhance their ability to degrade waste. Similarly, the introduction of oxygen can stimulate aerobic degradation processes, while the removal of oxygen can facilitate anaerobic degradation. Furthermore, the use of immobilized microorganisms, where they are trapped or attached to a support material, can improve their stability and activity, ensuring efficient waste degradation. In summary, the bioprocessing of waste holds immense potential in addressing the global waste management challenge. By harnessing the power of microorganisms, we can convert waste into valuable products while minimizing environmental harm. The successful implementation of bioprocessing techniques relies on the careful selection of microorganisms, optimization of process conditions, and manipulation of the waste matrix. Through the application of various strategies, we can ensure efficient microbial waste degradation and work towards a more sustainable and cleaner future. (Ravindran et al. 2021) (Wu et al. 2021) (Ayilara et al., 2020) (He et al., 2023) (Ayilara & Babalola, 2023) (Zainudin et al. 2022) (Shinde et al. 2022) (Patel et al. 2022).

### 7.2 Potential Research Directions

The disposal of biological waste by microorganisms is currently an issue of much interest and importance in the scientific community. Technological paths of waste treatment largely rely on the utilization of yeasts, fungi, and bacteria, which play a vital role in converting potentially toxic or pathogenic substances into non-toxic forms. This presents numerous opportunities for exploration and innovation in the field. In our opinion, the most significant breakthroughs are anticipated to stem from the development of new strategies

and the completion of several experimental studies. Recently, Yoshida et al embarked on a focused exploration of the advantages in certain areas, starting with a simple domestic system. This system allows researchers to assess the efficiency of the composed substrate with varying proportions and microbial loads in effectively disposing of biological waste. Building upon this foundation, conducting controlled experiments emerges as an alluring avenue for further research. To ensure the accuracy and reliability of findings, it is crucial to carry out realistic simulations of land-farming processes. These simulations enable scientists to quantify the amount of CO2, heat energy, and leachates released in diverse conditions regarding the initial concentration of biological waste. Furthermore, by employing controlled radio-nucleide and isotopic dating, researchers can assess the solubilization of the same waste. It is noteworthy that, after methane oxidation, the remaining CO2 remains stable. Additionally, the establishment of a land-farm is essential to harness the potential value of carbon-recycled plants in yielding biohydrogen and/or bioethanol. Moreover, a significant focus is placed on the development of protocols aimed at enhancing pollutant removal or customizing growth conditions of wells. By doing so, impractical and challenging bioaugmentation schemes can be effectively replaced or fortified with an alternative approach of delivering specific nitrobenzene-mineralizing consortia in a controlled laboratory setting. This opens up new possibilities for the removal of pollutants and the mitigation of environmental contamination. In conclusion, the disposal of biological waste by microorganisms is an area of great significance and intrigue. With a focus on developing new strategies and conducting experimental studies, researchers can make substantial advancements in waste treatment processes. By carrying out controlled experiments, realistic simulations, and optimizing growth conditions, the field can progress towards more efficient and sustainable solutions for the management of biological waste and the preservation of the environment. (Kieliszek et al., 2020) (Saeed et al. 2022) (Chatterjee & Mohan, 2022) (Aragaw2021) (Singh et al. 2022) (Leng et al. 2021) (Wierzchowska et al. 2021) (Parmar et al. 2022).

### References

- Srivastava, R. K., Shetti, N. P., Reddy, K. R., & Aminabhavi, T. M. (2020). Sustainable energy from waste organic matters via efficient microbial processes. science of the total environment, 722, 137927. [HTML]
- Amin, F. R., Khalid, H., El-Mashad, H. M., Chen, C., Liu, G., & Zhang, R. (2021). Functions of bacteria and archaea participating in the bioconversion of organic waste for methane production. Science of the Total Environment, 763, 143007. [HTML]
- 3. Mani, S., Chowdhary, P., & Zainith, S. (2020). Microbes mediated approaches for environmental waste management. In Microorganisms for sustainable environment and health (pp. 17-36). Elsevier. [HTML]
- Patel, A. K., Singhania, R. R., Albarico, F. P. J. B., Pandey, A., Chen, C. W., & Dong, C. D. (2022). Organic wastes bioremediation and its changing prospects. Science of the Total Environment, 824, 153889. [HTML]
- Ayilara, M. S., Olanrewaju, O. S., Babalola, O. O., & Odeyemi, O. (2020). Waste management through composting: Challenges and potentials. Sustainability.mdpi.com
- Sharma, P., Dutta, D., Udayan, A., Nadda, A. K., Lam, S. S., & Kumar, S. (2022). Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being. Environmental Pollution, 305, 119248. [HTML]
- Pal, A. K., Singh, J., Soni, R., Tripathi, P., Kamle, M., Tripathi, V., & Kumar, P. (2020). The role of microorganism in bioremediation for sustainable environment management. In Bioremediation of pollutants (pp. 227-249). Elsevier. [HTML]
- 8. Singh, S., & Shyu, D. J. (2024). Profiling of Microbial Community and Their Role in Solid Waste Treatment. In Environmental Engineering and Waste Management: Recent Trends and Perspectives (pp. 415-447). Cham: Springer Nature Switzerland. researchgate.net
- Saxena, G., Kishor, R., & Bharagava, R. N. (2020). Application of microbial enzymes in degradation and detoxification of organic and inorganic pollutants. Bioremediation of Industrial Waste .... google.com

- Mishra, S., Lin, Z., Pang, S., Zhang, W., Bhatt, P., & Chen, S. (2021).
   Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Frontiers in Bioengineering and Biotechnology, 9, 632059. frontiersin.org
- Ali, S. S., Elsamahy, T., Al-Tohamy, R., Zhu, D., Mahmoud, Y. A. G., Koutra, E.,... & Sun, J. (2021). Plastic wastes biodegradation: Mechanisms, challenges and future prospects. Science of The Total Environment, 780, 146590. [HTML]
- Rodríguez, A., Castrejón-Godínez, M. L., Salazar-Bustamante, E., Gama-Martínez, Y., Sánchez-Salinas, E., Mussali-Galante, P.,... & Ortiz-Hernández, M. L. (2020). Omics approaches to pesticide biodegradation. Current Microbiology, 77, 545-563. academia.edu
- 13. Amobonye, A., Bhagwat, P., Singh, S., & Pillai, S. (2021). Plastic biodegradation: Frontline microbes and their enzymes. Science of the Total Environment, 759, 143536. [HTML]
- 14. Zhang, Y., Pedersen, J. N., Eser, B. E., & Guo, Z. (2022). Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnology Advances. sciencedirect.com
- 15. , S. & Haritash, A. K. (2020). A comprehensive review of metabolic and genomic aspects of PAH-degradation. Archives of Microbiology. [HTML]
- 16. Chen, X., Yang, Y., Ke, Y., Chen, C., & Xie, S. (2022). A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect. Science of The Total Environment. [HTML]
- 17. Hu, R., Zhao, H., Xu, X., Wang, Z., Yu, K., Shu, L.,... & Wang, C. (2021). Bacteria-driven phthalic acid ester biodegradation: current status and emerging opportunities. Environment International, 154, 106560. sciencedirect.com
- Reis, A. C., Kolvenbach, B. A., Nunes, O. C., & Corvini, P. F. X. (2020).
   Biodegradation of antibiotics: The new resistance determinants—part I.
   New biotechnology. [HTML]
- 19. Zhang, W., Lin, Z., Pang, S., Bhatt, P., & Chen, S. (2020). Insights into the biodegradation of lindane (γ-hexachlorocyclohexane) using a microbial system. Frontiers in Microbiology. frontiersin.org
- 20. Rastogi, M., Nandal, M., & Khosla, B. (2020). Microbes as vital additives for solid waste composting. Heliyon. cell.com

- 21. Das, A. P. & Ghosh, S. (2022). Role of microorganisms in extenuation of mining and industrial wastes. Geomicrobiology Journal. tandfonline.com
- 22. Sharma, P., Gaur, V. K., Kim, S. H., & Pandey, A. (2020). Microbial strategies for bio-transforming food waste into resources. Bioresource technology. [HTML]
- Shahid, M. J., Al-Surhanee, A. A., Kouadri, F., Ali, S., Nawaz, N., Afzal, M.,... & Soliman, M. H. (2020). Role of microorganisms in the remediation of wastewater in floating treatment wetlands: a review. Sustainability, 12(14), 5559. mdpi.com
- 24. Varjani, S., Shah, A. V., Vyas, S., & Srivastava, V. K. (2021). Processes and prospects on valorizing solid waste for the production of valuable products employing bio-routes: a systematic review. Chemosphere. [HTML]
- Saeed, M. U., Hussain, N., Sumrin, A., Shahbaz, A., Noor, S., Bilal, M.,...
   Iqbal, H. M. (2022). Microbial bioremediation strategies with wastewater treatment potentialities—A review. Science of the total environment, 818, 151754. [HTML]
- Alvarez, L. M., Bolhuis, H., Mau, G. K., Kok-Gan, C., Sing, C. C., Mac Cormack, W., & Ruberto, L. (2022). Identification of key bacterial players during successful full-scale soil field bioremediation in Antarctica. International Biodeterioration & Biodegradation, 168, 105354. [HTML]
- 27. Zhang, G., Zhao, Z., Yin, X. A., & Zhu, Y. (2021). Impacts of biochars on bacterial community shifts and biodegradation of antibiotics in an agricultural soil during short-term incubation. Science of The Total Environment. [HTML]
- Kong, Z., Wang, X., Wang, M., Chai, L., Wang, X., Liu, D., & Shen, Q. (2020). Bacterial ecosystem functioning in organic matter biodegradation of different composting at the thermophilic phase. Bioresource Technology, 317, 123990. [HTML]
- Cerqueda-García, D., García-Maldonado, J. Q., Aguirre-Macedo, L., & García-Cruz, U. (2020). A succession of marine bacterial communities in batch reactor experiments during the degradation of five different petroleum types. Marine Pollution Bulletin, 150, 110775. [HTML]
- 30. Teixeira, P. D., Silva, V. S., & Tenreiro, R. (2020). Integrated selection and identification of bacteria from polluted sites for biodegradation of lipids. International Microbiology. [HTML]

- Rodríguez-Salazar, J., Loza, A., Ornelas-Ocampo, K., Gutierrez-Rios, R. M., & Pardo-López, L. (2021). Bacteria from the Southern Gulf of Mexico: baseline, diversity, hydrocarbon-degrading potential and future applications. Frontiers in Marine Science, 8, 625477. frontiersin.org
- 32. Hidalgo, K. J., Sierra-Garcia, I. N., Dellagnezze, B. M., & De Oliveira, V. M. (2020). Metagenomic insights into the mechanisms for biodegradation of polycyclic aromatic hydrocarbons in the oil supply chain. Frontiers in microbiology, 11, 561506. frontiersin.org
- 33. Dou, R., Sun, J., Lu, J., Deng, F., Yang, C., Lu, G., & Dang, Z. (2021). Bacterial communities and functional genes stimulated during phenanthrene degradation in soil by bio-microcapsules. Ecotoxicology and Environmental Safety, 212, 111970. sciencedirect.com
- 34. Parmar, S., Daki, S., Bhattacharya, S., & Shrivastav, A. (2022). Microorganism: An ecofriendly tool for waste management and environmental safety. In Development in wastewater treatment research and processes (pp. 175-193). Elsevier. [HTML]
- 35. Priya, A. K., Pachaiappan, R., Kumar, P. S., Jalil, A. A., Vo, D. V. N., & Rajendran, S. (2021). The war using microbes: A sustainable approach for wastewater management. Environmental Pollution, 275, 116598. [HTML]
- 36. Okeke, N. E., Adetunji, C. O., Nwankwo, W., Ukhurebor, K. E., Makinde, A. S., & Panpatte, D. G. (2021). A critical review of microbial transport in effluent waste and sewage sludge treatment. Microbial Rejuvenation of Polluted Environment: Volume 3, 217-238. academia.edu
- 37. Soni, K., Jyoti, K., Chandra, H., & Chandra, R. (2022). Bacterial antibiotic resistance in municipal wastewater treatment plant; mechanism and its impacts on human health and economy. Bioresource Technology Reports. [HTML]
- 38. Haenni, M., Dagot, C., Chesneau, O., Bibbal, D., Labanowski, J., Vialette, M.,... & Hocquet, D. (2022). Environmental contamination in a high-income country (France) by antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes: Status and possible causes. Environment international, 159, 107047. sciencedirect.com
- Shivalkar, S., Singh, V., Sahoo, A. K., Samanta, S. K., & Gautam, P. K. (2021). Bioremediation: a potential ecological tool for waste management. In Bioremediation for Environmental Sustainability (pp. 1-21). Elsevier. researchgate.net

- 40. De Beeck, M. O., Persson, P., & Tunlid, A. (2021). Fungal extracellular polymeric substance matrices—highly specialized microenvironments that allow fungi to control soil organic matter decomposition .... Soil Biology and Biochemistry. sciencedirect.com
- 41. Kumari, R., Singh, A., & Yadav, A. N. (2021). Fungal enzymes: degradation and detoxification of organic and inorganic pollutants. Recent Trends in Mycological Research: Volume 2: Environmental and Industrial Perspective, 99-125. [HTML]
- 42. Temporiti, M. E. E., Nicola, L., Nielsen, E., & Tosi, S. (2022). Fungal enzymes involved in plastics biodegradation. Microorganisms. mdpi.com
- 43. Zucconi, L., Canini, F., Temporiti, M. E., & Tosi, S. (2020). Extracellular enzymes and bioactive compounds from Antarctic terrestrial fungi for bioprospecting. International Journal of Environmental Research and Public Health, 17(18), 6459. mdpi.com
- 44. Cairns, T. C., Zheng, X., Zheng, P., Sun, J., & Meyer, V. (2021). Turning inside out: filamentous fungal secretion and its applications in biotechnology, agriculture, and the clinic. Journal of Fungi. mdpi.com
- Dashora, K., Gattupalli, M., Tripathi, G. D., Javed, Z., Singh, S., Tuohy, M.,... & Gupta, V. K. (2023). Fungal assisted valorisation of polymeric lignin: mechanism, enzymes and perspectives. Catalysts, 13(1), 149. mdpi.com
- 46. Chen, Y., Wang, Y., Paez-Espino, D., Polz, M. F., & Zhang, T. (2021). Prokaryotic viruses impact functional microorganisms in nutrient removal and carbon cycle in wastewater treatment plants. Nature communications, 12(1), 5398. nature.com
- 47. Petrovich, M. L., Zilberman, A., Kaplan, A., Eliraz, G. R., Wang, Y., Langenfeld, K.,... & Wells, G. F. (2020). Microbial and viral communities and their antibiotic resistance genes throughout a hospital wastewater treatment system. Frontiers in microbiology, 11, 153. frontiersin.org
- 48. Moresco, V., Oliver, D. M., Weidmann, M., Matallana-Surget, S., & Quilliam, R. S. (2021). Survival of human enteric and respiratory viruses on plastics in soil, freshwater, and marine environments. Environmental Research, 199, 111367. stir.ac.uk
- Chen, M. L., An, X. L., Liao, H., Yang, K., Su, J. Q., & Zhu, Y. G. (2021).
   Viral community and virus-associated antibiotic resistance genes in soils amended with organic fertilizers. Environmental Science & Technology, 55(20), 13881-13890.cas.cn

- Gao, S., Paez-Espino, D., Li, J., Ai, H., Liang, J., Luo, Z.,... & Huang, L. (2022). Patterns and ecological drivers of viral communities in acid mine drainage sediments across Southern China. Nature Communications, 13(1), 2389. nature.com
- 51. Deng, Y., Li, Z., Tang, R., Ouyang, K., Liao, C., Fang, Y.,... & Gong, D. (2020). What will happen when microorganisms "meet" photocatalysts and photocatalysis?. Environmental Science: Nano, 7(3), 702-723. [HTML]
- 52. Bose, S., Kumar, P. S., Vo, D. V. N., Rajamohan, N., & Saravanan, R. (2021). Microbial degradation of recalcitrant pesticides: a review. Environmental Chemistry Letters, 19, 3209-3228. [HTML]
- 53. Touliabah, H. E. S., El-Sheekh, M. M., Ismail, M. M., & El-Kassas, H. (2022). A review of microalgae-and cyanobacteria-based biodegradation of organic pollutants. Molecules, 27(3), 1141. mdpi.com
- 54. Imron, M. F., Kurniawan, S. B., Ismail, N. I., & Abdullah, S. R. S. (2020). Future challenges in diesel biodegradation by bacteria isolates: a review. Journal of Cleaner Production, 251, 119716. researchgate.net
- 55. Berg, B., McClaugherty, C., Berg, B., & McClaugherty, C. (2020). Decomposer organisms. Plant litter: Decomposition, humus formation, carbon sequestration, 45-65. [HTML]
- 56. Chunyan, X., Qaria, M. A., Qi, X., & Daochen, Z. (2023). The role of microorganisms in petroleum degradation: Current development and prospects. Science of The Total Environment. [HTML]
- 57. Bahl, S., Dolma, J., Singh, J. J., & Sehgal, S. (2021). Biodegradation of plastics: A state of the art review. Materials Today: Proceedings. academia.edu
- 58. Jabbour, C. R., Parker, L. A., Hutter, E. M., & Weckhuysen, B. M. (2021). Chemical targets to deactivate biological and chemical toxins using surfaces and fabrics. Nature Reviews Chemistry, 5(6), 370-387. nature.com
- 59. El-Shamy, A. M. (2020). A review on: biocidal activity of some chemical structures and their role in mitigation of microbial corrosion. Egyptian Journal of Chemistry. ekb.eg
- Prasad, S., Malav, L. C., Choudhary, J., Kannojiya, S., Kundu, M., Kumar, S., & Yadav, A. N. (2021). Soil microbiomes for healthy nutrient recycling. Current trends in microbial biotechnology for sustainable agriculture, 1-21. [HTML]

- 61. Hemkemeyer, M., Schwalb, S. A., Heinze, S., Joergensen, R. G., & Wichern, F. (2021). Functions of elements in soil microorganisms. Microbiological Research, 252, 126832. sciencedirect.com
- 62. Kumar, S., Sindhu, S. S., & Kumar, R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences. sciencedirect.com
- 63. Yadav, A. N., Kour, D., Kaur, T., Devi, R., Yadav, A., Dikilitas, M.,... & Saxena, A. K. (2021). Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. Biocatalysis and Agricultural Biotechnology, 33, 102009. [HTML]
- 64. Srivastava, R. R., Ilyas, S., Kim, H., Choi, S., Trinh, H. B., Ghauri, M. A., & Ilyas, N. (2020). Biotechnological recycling of critical metals from waste printed circuit boards. Journal of Chemical Technology & Biotechnology, 95(11), 2796-2810. [HTML]
- 65. Basu, S., Kumar, G., Chhabra, S., & Prasad, R. (2021). Role of soil microbes in biogeochemical cycle for enhancing soil fertility. In New and future developments in microbial biotechnology and bioengineering (pp. 149-157). Elsevier. [HTML]
- 66. Oliveira, J., Belchior, A., da Silva, V. D., Rotter, A., Petrovski, Ž., Almeida, P. L.,... & Gaudêncio, S. P. (2020). Marine environmental plastic pollution: mitigation by microorganism degradation and recycling valorization. Frontiers in Marine Science, 7, 567126. frontiersin.org
- 67. Tian, J., Ge, F., Zhang, D., Deng, S., & Liu, X. (2021). Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology. mdpi.com
- 68. Roy, J. J., Cao, B., & Madhavi, S. (2021). A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Chemosphere. ntu.edu.sg
- 69. Cao, Z., Yan, W., Ding, M., & Yuan, Y. (2022). Construction of microbial consortia for microbial degradation of complex compounds. Frontiers in Bioengineering and Biotechnology, 10, 1051233. frontiersin.org
- Kabaivanova, L., Petrova, P., Hubenov, V., & Simeonov, I. (2022).
   Biogas production potential of thermophilic anaerobic biodegradation of organic waste by a microbial consortium identified with metagenomics.
   Life. mdpi.com

- 71. Efremenko, E., Stepanov, N., Senko, O., Aslanli, A., Maslova, O., & Lyagin, I. (2024). Using Fungi in Artificial Microbial Consortia to Solve Bioremediation Problems. Microorganisms, 12(3), 470. mdpi.com
- Bhatt, P., Bhatt, K., Sharma, A., Zhang, W., Mishra, S., & Chen, S. (2021). Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Critical Reviews in Biotechnology, 41(3), 317-338. [HTML]
- Jain, R., Pattanaik, L., Padhi, S. K., & Naik, S. N. (2021). Role of microbes and microbial consortium in solid waste management. Environmental and Agricultural Microbiology: Applications for Sustainability, 383-422. researchgate.net
- Massot, F., Bernard, N., Alvarez, L. M. M., Martorell, M. M., Mac Cormack, W. P., & Ruberto, L. A. (2022). Microbial associations for bioremediation. What does "microbial consortia" mean?. Applied Microbiology and Biotechnology, 106(7), 2283-2297. researchgate.net
- 75. Skariyachan, S., Taskeen, N., Kishore, A. P., & Krishna, B. V. (2022). Recent advances in plastic degradation–From microbial consortia-based methods to data sciences and computational biology driven approaches. Journal of Hazardous Materials, 426, 128086. [HTML]
- Chen, X., Zhou, X., Geng, P., Zeng, Y., Hu, F., Sun, P.,... & Ma, A. (2023). Advancing biodegradation of petroleum contaminants by indigenous microbial consortia through assembly strategy innovations. Chemical Engineering Journal, 475, 146142. sciencedirect.com
- 77. Di Maria, F., Beccaloni, E., Bonadonna, L., Cini, C., Confalonieri, E., La Rosa, G.,... & Scaini, F. (2020). Minimization of spreading of SARS-CoV-2 via household waste produced by subjects affected by COVID-19 or in quarantine. Science of the Total Environment, 743, 140803. nih.gov
- Hantoko, D., Li, X., Pariatamby, A., Yoshikawa, K., Horttanainen, M., & Yan, M. (2021). Challenges and practices on waste management and disposal during COVID-19 pandemic. Journal of environmental management, 286, 112140. nih.gov
- 79. Yousefloo, A. & Babazadeh, R. (2020). Designing an integrated municipal solid waste management network: A case study. Journal of cleaner production. [HTML]
- 80. Ugwu, C. O., Ozoegwu, C. G., & Ozor, P. A. (2020). Solid waste quantification and characterization in university of Nigeria, Nsukka campus, and recommendations for sustainable management. Heliyon. cell.com

- 81. Khan, S., Anjum, R., Raza, S. T., Bazai, N. A., & Ihtisham, M. (2022). Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere. [HTML]
- 82. Ding, Y., Zhao, J., Liu, J. W., Zhou, J., Cheng, L., Zhao, J.,... & Hu, Z. T. (2021). A review of China's municipal solid waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization. Journal of cleaner production, 293, 126144. [HTML]
- 83. Wang, C., Qin, J., Qu, C., Ran, X., Liu, C., & Chen, B. (2021). A smart municipal waste management system based on deep-learning and Internet of Things. Waste Management. researchgate.net
- 84. Ahmad, S., Jamil, F., Iqbal, N., & Kim, D. (2020). Optimal route recommendation for waste carrier vehicles for efficient waste collection: A step forward towards sustainable cities. IEEE Access. ieee.org
- 85. Shen, Q., Ji, F., Wei, J., Fang, D., Zhang, Q., Jiang, L.,... & Kuang, L. (2020). The influence mechanism of temperature on solid phase denitrification based on denitrification performance, carbon balance, and microbial analysis. Science of The Total Environment, 732, 139333. [HTML]
- 86. Li, Y., Chen, Z., Peng, Y., Huang, W., Liu, J., Mironov, V., & Zhang, S. (2022). Deeper insights into the effects of substrate to inoculum ratio selection on the relationship of kinetic parameters, microbial communities, and key metabolic pathways during the anaerobic digestion of food waste. Water Research, 217, 118440. [HTML]
- 87. Kebede, G., Tafese, T., Abda, E. M., Kamaraj, M., & Assefa, F. (2021). Factors influencing the bacterial bioremediation of hydrocarbon contaminants in the soil: mechanisms and impacts. Journal of Chemistry, 2021(1), 9823362. wiley.com
- 88. Tamnou, E. B. M., Arfao, A. T., Nougang, M. E., Metsopkeng, C. S., Ewoti, O. V. N., Moungang, L. M.,... & Nola, M. (2021). Biodegradation of polyethylene by the bacterium Pseudomonas aeruginosa in acidic aquatic microcosm and effect of the environmental temperature. Environmental Challenges, 3, 100056. sciencedirect.com
- 89. Zhang, K., Wang, S., Guo, P., & Guo, S. (2021). Characteristics of organic carbon metabolism and bioremediation of petroleum-contaminated soil by a mesophilic aerobic biopile system. Chemosphere. [HTML]

- 90. Yuan, J., Ma, J., Sun, Y., Zhou, T., Zhao, Y., & Yu, F. (2020). Microbial degradation and other environmental aspects of microplastics/plastics. Science of the Total Environment, 715, 136968. [HTML]
- 91. Nie, E., He, P., Zhang, H., Hao, L., Shao, L., & Lü, F. (2021). How does temperature regulate anaerobic digestion?. Renewable and Sustainable Energy Reviews, 150, 111453. [HTML]
- 92. Chen, H., Chen, Z., Chu, X., Deng, Y., Qing, S., Sun, C.,... & Wang, Y. (2022). Temperature mediated the balance between stochastic and deterministic processes and reoccurrence of microbial community during treating aniline wastewater. Water Research, 221, 118741. [HTML]
- 93. Kumar, S. D., Yasasve, M., Karthigadevi, G., Aashabharathi, M., Subbaiya, R., Karmegam, N., & Govarthanan, M. (2022). Efficiency of microbial fuel cells in the treatment and energy recovery from food wastes: trends and applications-a review. Chemosphere, 287, 132439. [HTML]
- 94. Hoang, A. T., Nižetić, S., Ng, K. H., Papadopoulos, A. M., Le, A. T., Kumar, S., & Hadiyanto, H. (2022). Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector. Chemosphere, 287, 132285. [HTML]
- 95. Chukwuma, O. B., Rafatullah, M., Tajarudin, H. A., & Ismail, N. (2021). A review on bacterial contribution to lignocellulose breakdown into useful bio-products. International journal of environmental research and public health, 18(11), 6001. mdpi.com
- Apollon, W., Rusyn, I., González-Gamboa, N., Kuleshova, T., Luna-Maldonado, A. I., Vidales-Contreras, J. A., & Kamaraj, S. K. (2022).
   Improvement of zero waste sustainable recovery using microbial energy generation systems: A comprehensive review. Science of The Total Environment, 817, 153055. [HTML]
- 97. Vyas, S., Prajapati, P., Shah, A. V., Srivastava, V. K., & Varjani, S. (2022). Opportunities and knowledge gaps in biochemical interventions for mining of resources from solid waste: a special focus on anaerobic digestion. Fuel. [HTML]
- 98. Ashkan, Z., Hemmati, R., Homaei, A., Dinari, A., Jamlidoost, M., & Tashakor, A. (2021). Immobilization of enzymes on nanoinorganic support materials: An update. International Journal of Biological Macromolecules, 168, 708-721. academia.edu
- 99. Rodrigues, R. C., Berenguer-Murcia, Á., Carballares, D., Morellon-

- Sterling, R., & Fernandez-Lafuente, R. (2021). Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnology advances, 52, 107821. sciencedirect.com
- 100.Kujawa, J., Głodek, M., Li, G., Al-Gharabli, S., Knozowska, K., & Kujawski, W. (2021). Highly effective enzymes immobilization on ceramics: Requirements for supports and enzymes. Science of The Total Environment, 801, 149647. sciencedirect.com
- 101. Siedentop, R., Claaßen, C., Rother, D., Lütz, S., & Rosenthal, K. (2021). Getting the most out of enzyme cascades: strategies to optimize in vitro multi-enzymatic reactions. Catalysts, 11(10), 1183. mdpi.com
- 102. Chen, C. C., Han, X., Li, X., Jiang, P., Niu, D., Ma, L., & Liu..., W. (2021). General features to enhance enzymatic activity of poly (ethylene terephthalate) hydrolysis. Nature Catalysis. [HTML]
- 103.Li, Y. & Liu, J. (2021). Nanozyme's catching up: activity, specificity, reaction conditions and reaction types. Materials Horizons. [HTML]
- 104. Danilova, I. & Sharipova, M. (2020). The practical potential of bacilli and their enzymes for industrial production. Frontiers in microbiology. frontiersin.org
- 105.Guisan, J. M., López-Gallego, F., Bolivar, J. M., Rocha-Martín, J., & Fernandez-Lorente, G. (2020). The science of enzyme immobilization. Immobilization of Enzymes and Cells: Methods and protocols, 1-26. researchgate.net
- 106.Chetri, J. K. & Reddy, K. R. (2021). Advancements in municipal solid waste landfill cover system: A review. Journal of the Indian Institute of Science. nsf.gov
- 107. Etim, R. K., Ijimdiya, T. S., Eberemu, A. O., & Osinubi, K. J. (2022). Compatibility interaction of landfill leachate with lateritic soil bio-treated with Bacillus megaterium: Criterion for barrier material in municipal solid waste .... Cleaner Materials. sciencedirect.com
- 108.Mironov, V., Moldon, I., Shchelushkina, A., Zhukov, V., & Zagustina, N. (2023). Bio-Drying of Municipal Wastewater Sludge: Effects of High Temperature, Low Moisture Content and Volatile Compounds on the Microbial Community. Fermentation, 9(6), 570. mdpi.com
- 109.VU, Q. H. (2020). Study on Elevated Temperature and Gas Component within an Operating Semi-Aerobic Landfill. nii. ac. jp

- 110.Reynolds, M. C. (2022). Characterization and Manipulation of Microbiomes From Arid Landfills for Improved Methane Production. asu.edu
- 111.Hu, L., Zhang, D., Qian, Y., Nie, Z., Long, Y., Shen, D.,... & Yao, J. (2022). Microbes drive changes in arsenic species distribution during the landfill process. Environmental Pollution, 292, 118322. [HTML]
- 112.Berenjkar, P. (2022). Innovative bio-covers to mitigate the landfill methane emissions under wide seasonally fluctuating conditions. umanitoba. ca
- 113. Palaniveloo, K., Amran, M. A., Norhashim, N. A., Mohamad-Fauzi, N., Peng-Hui, F., Hui-Wen, L.,... & Razak, S. A. (2020). Food waste composting and microbial community structure profiling. Processes, 8(6), 723. mdpi.com
- 114.Amuah, E. E. Y., Fei-Baffoe, B., Sackey, L. N. A., Douti, N. B., & Kazapoe, R. W. (2022). A review of the principles of composting: understanding the processes, methods, merits, and demerits. Organic Agriculture, 12(4), 547-562. [HTML]
- 115.Sayara, T., Basheer-Salimia, R., Hawamde, F., & Sánchez, A. (2020). Recycling of organic wastes through composting: Process performance and compost application in agriculture. Agronomy. mdpi.com
- 116.Meena, A. L., Karwal, M., Dutta, D., & Mishra, R. P. (2021). Composting: phases and factors responsible for efficient and improved composting. Agriculture and Food: e-Newsletter, 1, 85-90. researchgate.net
- 117. Wang, Y., Liu, L., Yang, J., Duan, Y., Luo, Y., Taherzadeh, M. J.,... & Zhao, Z. (2020). The diversity of microbial community and function varied in response to different agricultural residues composting. Science of the Total Environment, 715, 136983. [HTML]
- 118.Sharma, J., Goutam, J., Dhuriya, Y. K., & Sharma, D. (2021). Bioremediation of Industrial pollutants. Microbial Rejuvenation of Polluted Environment: Volume 2, 1-31. academia.edu
- 119. Saravanan, A., Kumar, P. S., Duc, P. A., & Rangasamy, G. (2023). Strategies for microbial bioremediation of environmental pollutants from industrial wastewater: A sustainable approach. Chemosphere. [HTML]
- 120.Ayilara, M. S. & Babalola, O. O. (2023). Bioremediation of environmental wastes: the role of microorganisms. Frontiers in Agronomy. frontiers in.org

- 121.Singh, P., Singh, V. K., Singh, R., Borthakur, A., Madhav, S., Ahamad, A.,... & Mishra, P. K. (2020). Bioremediation: a sustainable approach for management of environmental contaminants. In Abatement of environmental pollutants (pp. 1-23). Elsevier. academia.edu
- 122. Chaudhary, P., Ahamad, L., Chaudhary, A., Kumar, G., Chen, W. J., & Chen, S. (2023). Nanoparticle-mediated bioremediation as a powerful weapon in the removal of environmental pollutants. Journal of Environmental Chemical Engineering, 11(2), 109591. [HTML]
- 123. Thirumalaivasan, N., Gnanasekaran, L., Kumar, S., Durvasulu, R., Sundaram, T., Rajendran, S.,... & Kanagaraj, K. (2024). Utilization of fungal and bacterial bioremediation techniques for the treatment of toxic waste and biowaste. Frontiers in Materials, 11, 1416445. frontiersin.org
- 124.Saxena, G., Kumar, V., & Shah, M. P. (2020). Bioremediation for environmental sustainability: toxicity, mechanisms of contaminants degradation, detoxification and challenges. [HTML]
- 125. Sharma, I. (2020). Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects. In Trace metals in the environment-new approaches and recent advances. IntechOpen. intechOpen.com
- 126.Hakeem, K. R., Bhat, R. A., & Qadri, H. (2020). Bioremediation and biotechnology. researchgate.net
- 127.Zhang, S., Jiang, J., Wang, H., Li, F., Hua, T., & Wang, W. (2021). A review of microbial electrosynthesis applied to carbon dioxide capture and conversion: The basic principles, electrode materials, and bioproducts. Journal of CO2 Utilization. [HTML]
- 128.Pan, Q., Tian, X., Li, J., Wu, X., & Zhao, F. (2021). Interfacial electron transfer for carbon dioxide valorization in hybrid inorganic-microbial systems. Applied Energy. [HTML]
- 129.Salehizadeh, H., Yan, N., & Farnood, R. (2020). Recent advances in microbial CO2 fixation and conversion to value-added products. Chemical Engineering Journal. [HTML]
- 130.Okoye-Chine, C. G., Otun, K., Shiba, N., Rashama, C., Ugwu, S. N., Onyeaka, H., & Okeke, C. T. (2022). Conversion of carbon dioxide into fuels—A review. Journal of CO2 Utilization, 62, 102099. [HTML]
- 131.Das, S., Das, I., & Ghangrekar, M. M. (2020). Role of applied potential on microbial electrosynthesis of organic compounds through carbon

- dioxide sequestration. Journal of Environmental Chemical Engineering, 8(4), 104028. [HTML]
- 132.Zafar, H., Peleato, N., & Roberts, D. (2022). A review of the role of pretreatment on the treatment of food waste using microbial fuel cells. Environmental Technology Reviews, 11(1), 72-90. researchgate.net
- 133.Balasundaram, G., Banu, R., Varjani, S., Kazmi, A. A., & Tyagi, V. K. (2022). Recalcitrant compounds formation, their toxicity, and mitigation: key issues in biomass pretreatment and anaerobic digestion. Chemosphere, 291, 132930. [HTML]
- 134.Bhat, A. P. & Gogate, P. R. (2021). Cavitation-based pre-treatment of wastewater and waste sludge for improvement in the performance of biological processes: A review. Journal of Environmental Chemical Engineering. [HTML]
- 135.Sharma, P., Bano, A., Singh, S. P., Dubey, N. K., Chandra, R., & Iqbal, H. M. (2022). Recent advancements in microbial-assisted remediation strategies for toxic contaminants. Cleaner Chemical Engineering, 2, 100020. sciencedirect.com
- 136.Nguyen, V. K., Chaudhary, D. K., Dahal, R. H., Trinh, N. H., Kim, J., Chang, S. W.,... & Nguyen, D. D. (2021). Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel, 285, 119105. uts.edu.au
- 137. Varjani, S., Sivashanmugam, P., Tyagi, V. K., & Gunasekaran, M. (2022). Breakthrough in hydrolysis of waste biomass by physicochemical pretreatment processes for efficient anaerobic digestion. Chemosphere, 294, 133617. [HTML]
- 138.Ebrahimian, F., Denayer, J. F., Mohammadi, A., Khoshnevisan, B., & Karimi, K. (2023). A critical review on pretreatment and detoxification techniques required for biofuel production from the organic fraction of municipal solid waste. Bioresource technology, 368, 128316. researchgate.net
- 139. Ansari, A. A., Ori, L., & Ramnarain, Y. I. (2020). An effective organic waste recycling through vermicompost technology for soil health restoration. Soil Health Restoration and Management. researchgate.net
- 140.Iqbal, N., Agrawal, A., Dubey, S., & Kumar, J. (2020). Role of decomposers in agricultural waste management. In Biotechnological Applications of Biomass. IntechOpen. intechopen.com

- 141.Kaur, T. (2020). Vermicomposting: An effective option for recycling organic wastes. Organic agriculture. intechopen.com
- 142.Sagarika, M. S., Parameswaran, C., Senapati, A., Barala, J., Mitra, D., Prabhukarthikeyan, S. R.,... & Panneerselvam, P. (2022). Lytic polysaccharide monooxygenases (LPMOs) producing microbes: A novel approach for rapid recycling of agricultural wastes. Science of the Total Environment, 806, 150451. academia.edu
- 143.Ravindran, B., Karmegam, N., Yuvaraj, A., Thangaraj, R., Chang, S. W., Zhang, Z., & Awasthi, M. K. (2021). Cleaner production of agriculturally valuable benignant materials from industry generated bio-wastes: A review. Bioresource Technology, 320, 124281. [HTML]
- 144.Wu, P., Wang, Z., Bhatnagar, A., Jeyakumar, P., Wang, H., Wang, Y., & Li, X. (2021). Microorganisms-carbonaceous materials immobilized complexes: Synthesis, adaptability and environmental applications. Journal of Hazardous Materials, 416, 125915. [HTML]
- 145.He, M., Wu, F., Qu, G., & Liu, X. (2023). Harmless and resourceful utilization of solid waste: Multi physical field regulation in the microbiological treatment process of solid waste treatment. Environmental Research. [HTML]
- 146. Zainudin, M. H. M., Zulkarnain, A., Azmi, A. S., Muniandy, S., Sakai, K., Shirai, Y., & Hassan, M. A. (2022). Enhancement of agro-industrial waste composting process via the microbial inoculation: a brief review. Agronomy, 12(1), 198. mdpi.com
- 147.Shinde, R., Shahi, D. K., Mahapatra, P., Naik, S. K., Thombare, N., & Singh, A. K. (2022). Potential of lignocellulose degrading microorganisms for agricultural residue decomposition in soil: A review. Journal of Environmental Management, 320, 115843. academia.edu
- 148. Kieliszek, M., Piwowarek, K., Kot, A. M., & Pobiega, K. (2020). The aspects of microbial biomass use in the utilization of selected waste from the agro-food industry. Open Life Sciences. degruyter.com
- 149. Chatterjee, S. & Mohan, S. V. (2022). Fungal biorefinery for sustainable resource recovery from waste. Bioresource Technology. [HTML]
- 150.Aragaw, T. A. (2021). Functions of various bacteria for specific pollutants degradation and their application in wastewater treatment: a review. International Journal of Environmental Science and Technology, 18, 2063-2076. researchgate.net

- 151.Singh, A., Pal, D. B., Mohammad, A., Alhazmi, A., Haque, S., Yoon, T.,... & Gupta, V. K. (2022). Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. Bioresource Technology, 343, 126154. [HTML]
- 152.Leng, L., Li, W., Chen, J., Leng, S., Chen, J., Wei, L.,... & Huang, H. (2021). Co-culture of fungi-microalgae consortium for wastewater treatment: A review. Bioresource technology, 330, 125008. [HTML]
- 153.Wierzchowska, K., Zieniuk, B., & Fabiszewska, A. (2021). Use of non-conventional yeast Yarrowia lipolytica in treatment or upgradation of hydrophobic industry wastes. Waste and Biomass Valorization, 1-23. springer.com