Study of Blood Sugar Levels in Patients with Kidney Failure

Editors

Zubaedh Rashed Abd Almajed Hussein

Department Pathological Analysis, College of Applied Sciences, University of Samara

Dhuha Sabah Aziz Hussein

Department Pathological Analysis, College of Science, University of Kufa

Zainab Kareem Jabur Saad

Department of Pathological Analysis, College of Science, University of Dhi Qar

Fawzi Muhammad Fawzi Ameen

Department of Pathological Analyzes, College of Applied Science, Samarra University

AkiNik Publications® New Delhi

Published By: AkiNik Publications

AkiNik Publications 169, C-11, Sector - 3,

Rohini, Delhi-110085, India

Toll Free (India) – 18001234070

Phone No.: 9711224068, 9911215212

Website: www.akinik.com

Email: akinikbooks@gmail.com

Editors: Zubaedh Rashed Abd Almajed Hussein, Dhuha Sabah Aziz Hussein, Zainab Kareem Jabur Saad and Fawzi Muhammad Fawzi Ameen

The author/publisher has attempted to trace and acknowledge the materials reproduced in this publication and apologize if permission and acknowledgements to publish in this form have not been given. If any material has not been acknowledged please write and let us know so that we may rectify it.

© AkiNik Publications TM

Publication Year: 2024

Edition: 1st
Pages: 80

E-book ISBN: 978-93-6135-134-1

Paperback ISBN: 978-93-6135-787-9

Book DOI: https://doi.org/10.22271/ed.book.2893

Price: ₹415/-

Registration Details

- Printing Press License No.: F.1 (A-4) press 2016
- > Trade Mark Registered Under
 - Class 16 (Regd. No.: 5070429)
 - Class 35 (Regd. No.: 5070426)
 - Class 41 (Regd. No.: 5070427)
 - Class 42 (Regd. No.: 5070428)

Contents

S. No.	Units	Page No.
1.	Introduction	01-09
2.	Anatomy and Physiology of the Kidneys	10-13
3.	Diabetes and Kidney Failure	14-19
4.	Blood Sugar Regulation Mechanisms	20-24
5.	Impact of Kidney Failure on Blood Sugar Levels	25-28
6.	Diagnostic Methods for Blood Sugar Levels	29-32
7.	Treatment Strategies	33-37
8	Nutritional Considerations	38-42
9.	Lifestyle Modifications	43-47
10.	Challenges in Management	48-53
11.	Future Research Directions	54-58
12.	Conclusion	59-60
	References	61-80

Unit - 1

Introduction

Diabetes and high blood pressure are the main causes of kidney failure, and it remains a common complication of patients with diabetes. A previous study showed that a significant majority, specifically 55.7%, of patients with endstage renal disease are diabetic in Jordan. In addition, treating diabetes complications has been associated with poorer quality of life and shorter survival rates. The main aim of this study was to compare and analyze different categories of blood sugar levels, specifically in fasting and nonfasting blood samples of hemodialysis patients. Fasting blood sugar, which refers to the amount of glucose in the blood after an overnight fast or not eating for a prolonged period of time, plays a fundamental role in understanding the metabolic state of individuals. On the other hand, a non-fasting blood sugar test measures the amount of glucose in the blood after a meal, allowing for a comprehensive assessment of postprandial glycemic control. Moreover, this study aimed to investigate the intricate relationship between cholesterol and triglyceride levels and their association with high and low blood sugar levels in both the fasting and non-fasting categories of diabetic hemodialysis patients. Diabetes poses a major problem for many patients with chronic kidney disease, with approximately half of kidney transplant recipients having diabetes as the primary cause of their kidney failure. Universal regulation of glucose levels in diabetic patients proves to be a challenging task. Moreover, such metabolic dysregulation significantly impacts the function of the renal allograft. Fortunately, a low dose of steroids administered as part of immunosuppression therapy has shown promising results in enhancing allograft function for post-kidney transplantation patients with high glucose levels. However, it is important to note that the steroid effect has its limitations and cannot be considered a long-term solution. Given this information, it becomes clear that preventing dysglycemia prior to transplant would be a more effective approach in improving glycemic control for post-kidney transplant patients. The relationship between hemodialysis and diabetes is a complex one. Not only does hemodialysis trigger cardiovascular problems in patients with diabetes, but it also compromises the overall success of dialysis treatment, transplantation outcomes, and ultimately, the quality of life of the

patients. Furthermore, the prevalence of diabetes in patients undergoing hemodialysis is alarming. Studies have shown that a substantial proportion of hemodialysis patients suffer from diabetes, making it a significant concern in the management of kidney disease. The impact of diabetes on hemodialysis patients goes beyond the physiological implications. Patients with diabetes often experience emotional distress and psychological burden due to their condition. The constant monitoring of blood sugar levels, adherence to dietary restrictions, and the need for insulin therapy create additional challenges for these individuals. Moreover, the relationship between cholesterol and triglyceride levels in diabetic hemodialysis patients adds another layer of complexity. High blood sugar levels have been shown to be associated with elevated cholesterol and triglyceride levels, further contributing to the burden of disease management. This association underscores the importance of comprehensive monitoring and management of blood sugar levels in hemodialysis patients. By effectively controlling blood sugar levels, healthcare providers can potentially mitigate the risk of cardiovascular complications and improve overall patient outcomes. In light of these challenges, enhancing glycemic control in hemodialysis patients becomes a crucial goal in clinical practice. Recognizing the impact of dysglycemia on kidney transplant recipients, efforts should be directed towards preventing diabetes-related kidney failure and optimizing glucose regulation prior to transplantation. This proactive approach can potentially improve the success rates of kidney transplantation and alleviate the burden of post-transplant diabetes. Interventions such as lifestyle modifications, individualized dietary plans, and close monitoring of blood sugar levels can play a pivotal role in achieving optimal glycemic control and improving the quality of life for diabetic hemodialysis patients. In conclusion, the relationship between diabetes, hemodialysis, and kidney failure is multifaceted and requires a comprehensive approach. Effective management of blood sugar levels, cholesterol, and triglyceride levels is essential to mitigate the risk of complications and improve patient outcomes. By recognizing the significance of dysglycemia and its impact on kidney function, healthcare providers can implement preventive measures and personalized interventions to optimize glycemic control in diabetic hemodialysis patients. Through collaborative efforts and holistic care, we can strive towards better outcomes, enhanced quality of life, and improved overall health for this vulnerable patient population. This comprehensive approach will contribute to the well-being of individuals suffering from diabetes and kidney failure. Ultimately, it is crucial to prioritize the prevention, monitoring, and management of diabetes and high blood pressure in order to minimize the occurrence and impact of kidney failure, and to improve the overall health and well-being of patients affected by these conditions. The collaboration between healthcare providers, researchers, and patients themselves is vital in addressing the complex challenges posed by diabetes and its implications for kidney function. By working together, we can make significant strides in preventing and managing kidney failure, ensuring a brighter future for patients living with these conditions. The prevention and management of diabetes and high blood pressure in order to minimize the occurrence and impact of kidney failure, and to improve the overall health and well-being of patients affected by these conditions should be prioritized. The collaboration between healthcare providers, researchers, and patients themselves is vital in addressing the complex challenges posed by diabetes and its implications for kidney function. By working together, we can make significant strides in preventing and managing kidney failure, ensuring a brighter future for patients living with these conditions. By recognizing the significance of dysglycemia and its impact on kidney function, healthcare providers can implement preventive measures and personalized interventions to optimize glycemic control in diabetic hemodialysis patients. Through collaborative efforts and holistic care, we can strive towards better outcomes, enhanced quality of life, and improved overall health for this vulnerable patient population. This comprehensive approach will contribute to the well-being of individuals suffering from diabetes and kidney failure. Ultimately, it is crucial to prioritize the prevention, monitoring, and management of diabetes and high blood pressure in order to minimize the occurrence and impact of kidney failure, and to improve the overall health and well-being of patients affected by these conditions. The collaboration between healthcare providers, researchers, and patients themselves is vital in addressing the complex challenges posed by diabetes and its implications for kidney function. By working together, we can make significant strides in preventing and managing kidney failure, ensuring a brighter future for patients living with these conditions. (Izraiq et al. 2024) (Abdulraheem, 2021) (Mohammed et al. 2022) (Almadhoon et al. 2022) (Alshammari et al. 2023) (Abuelmagd, 2020) (Lee et al. 2020) (Yaghmour et al. 2023) (El-Kebbi et al. 2021) (Vargas-Vázquez et al. 2023).

1.1 Background and Rationale

The level of blood sugar in an individual is intricately tied to the functioning of the kidneys. If an individual has poor control over their blood sugar levels, it can potentially lead to kidney failure. This can be a dire consequence of not effectively managing blood sugar levels. Conversely, when a person is already experiencing kidney failure, special attention must

be given to their medication, especially in relation to drugs designed to lower blood sugar levels. The delicate balance between blood sugar and kidney function must be carefully maintained. The management of blood sugar levels becomes even more complex for individuals with advanced kidney failure, as they may also experience hormonal imbalances that can further impact their blood sugar levels. The interplay between kidney function and blood sugar levels requires a nuanced approach to medication administration. Blood sugarlowering medications must be carefully adjusted based on the patient's specific condition, considering their kidney function and hormonal status. The blood sugar levels of individuals with kidney failure caused by chronic kidney disease (CKD) can be directly influenced by the functioning of their kidneys. It is a result of the intricate connection between the kidneys and blood sugar regulation. Those in the moderate and advanced stages of CKD may experience a decrease in glomerular filtration rates, which can disrupt the balance of blood sugar in their bodies. The decline in kidney function directly affects blood sugar levels, often leading to imbalances. This disruption is often reflected in their HbA1c (glycated hemoglobin) levels, which may not accurately represent their actual blood sugar levels. The reliance on HbA1c levels alone may not provide a comprehensive understanding of their blood sugar control. Furthermore, fasting blood sugar levels and blood sugar levels two hours after eating can also provide inaccurate results in advanced CKD patients. The traditional methods of assessing blood sugar levels may not capture the complete picture of their metabolic status. It is not uncommon for these patients to exhibit low fasting blood sugar levels alongside high blood sugar levels postprandial (after meals). This mismatch can complicate the management of blood sugar levels in individuals with kidney failure. Consequently, it is crucial to closely monitor the blood sugar levels of individuals with kidney failure, as their kidney function and blood sugar levels are inextricably linked. The close monitoring of blood sugar levels is essential for the optimal management of their overall health. In cases of poor blood sugar control, there is an elevated risk of kidney failure, necessitating meticulous consideration when prescribing medications, particularly those aimed at lowering blood sugar. Healthcare providers must consider the potential risks and benefits of blood sugar-lowering medications in patients with kidney failure. Additionally, individuals with advanced kidney failure may experience hormonal imbalances, further influencing their blood sugar levels. The hormonal imbalances add an additional layer of complexity to the management of blood sugar levels. To achieve optimal treatment outcomes, it is essential to tailor the administration of blood sugar-lowering drugs based on the patient's specific condition. A personalized approach is crucial in navigating the intricate relationship between kidney function, hormonal imbalances, and blood sugar control. In the context of CKD kidney failure, kidney function plays a prominent role in directly influencing blood sugar levels. As patients progress to moderate and advanced stages of CKD, their glomerular filtration rates decline, causing disruptions in blood sugar balance. These disruptions are often apparent in their HbA1c levels, which may exhibit discrepancies. Simply relying on HbA1c levels may not provide a complete understanding of their blood sugar dynamics. Moreover, fasting blood sugar levels and blood sugar levels two hours postprandial can yield incorrect readings in advanced CKD patients. The traditional methods used to assess blood sugar levels may not accurately reflect their metabolic status. It is not uncommon for these patients to present with low fasting blood sugar levels paired with high blood sugar levels postprandial. The discrepancy in blood sugar profiles further underscores the need for a comprehensive and individualized approach to blood sugar management for individuals with advanced CKD and kidney failure. Therefore, medical professionals must exercise caution and diligence when assessing and managing blood sugar levels in individuals with advanced CKD and kidney failure. Understanding their kidney function, hormonal status, and other relevant factors is imperative for effective treatment. A thorough assessment of the patient's overall health is essential in developing a comprehensive treatment plan. By implementing personalized approaches and closely monitoring blood sugar levels, healthcare providers can optimize the management of blood sugar in CKD patients, ultimately enhancing their overall well-being and quality of life. The tailored approach to blood sugar management is fundamental in improving the health outcomes of individuals with advanced CKD and kidney failure. The importance of proper blood sugar control cannot be overstated in the context of kidney failure. Managing blood sugar levels is crucial for avoiding complications and preserving kidney function. The delicate interplay between the kidneys and blood sugar regulation demands careful attention and appropriate medication adjustments. For individuals with chronic kidney disease (CKD), the consequences of imbalances in blood sugar levels are particularly pronounced. As the disease progresses, the capacity of the kidneys to effectively control blood sugar decreases, leading to disruptions in the body's glucose homeostasis. These disruptions can manifest as irregularities in HbA1c levels, which may not fully reflect the actual blood sugar levels experienced by the patient. Therefore, relying solely on HbA1c measurements may not provide an accurate representation of an individual's blood sugar control. Similarly, conventional methods of evaluating blood sugar levels, such as fasting measurements and postprandial readings, may prove inadequate for advanced CKD patients. It is not uncommon for these individuals to present with contradicting blood sugar profiles, with low fasting levels but elevated post-meal readings. This discrepancy highlights the complexity of managing blood sugar levels in the presence of kidney failure. As a result, meticulous monitoring of blood sugar levels becomes essential, as it is intrinsically linked to kidney function. Close surveillance ensures optimal control of blood sugar levels and promotes the overall health of patients with kidney failure. When it comes to medication, caution must be exercised in prescribing blood sugar-lowering drugs to individuals with kidney failure. Healthcare professionals must carefully weigh the risks and benefits of these medications, tailoring the treatment approach to suit each patient's unique circumstances. Moreover, individuals with advanced kidney failure often experience hormonal imbalances, which can further influence blood sugar levels. These imbalances introduce yet another layer of complexity in managing blood sugar effectively. To achieve optimal treatment outcomes, a personalized approach is required, considering kidney function, hormonal status, and other pertinent factors. This individualized strategy is crucial in navigating the intricate relationship between kidney function, hormonal imbalances, and blood sugar control. In the realm of CKD and kidney failure, the direct influence of kidney function on blood sugar levels cannot be ignored. As CKD advances, glomerular filtration rates decline, disrupting blood sugar balance and regulation. These imbalances are evident in HbA1c measurements, which may yield inconsistent results. Relying solely on HbA1c levels may not provide a thorough understanding of blood sugar dynamics in these patients. Additionally, traditional methods of assessing blood sugar, including fasting levels and postprandial readings, may produce inaccurate outcomes for advanced CKD individuals. It is not uncommon for them to exhibit low fasting blood sugar levels alongside high levels after meals. The mismatch between fasting and postprandial blood sugar levels further complicates blood sugar management in kidney failure patients. Therefore, meticulous monitoring of blood sugar levels is indispensable, given the inseparable connection between kidney function and blood sugar status. This close monitoring is pivotal for optimizing overall health and well-being. In cases of inadequate blood sugar control, there is an increased risk of kidney failure, emphasizing the need for careful consideration when prescribing blood sugar-lowering medications. Healthcare providers must carefully assess the potential risks and benefits of these medications in patients with kidney failure. Furthermore, hormonal imbalances that commonly occur in advanced kidney failure can significantly impact blood sugar levels, heightening the complexity of their management. A personalized approach to drug administration is essential to achieve the best treatment outcomes. This tailored approach recognizes the intricate relationship between kidney function, hormonal imbalances, and blood sugar control. In the context of advanced CKD and kidney failure patients, understanding kidney function, hormonal status, and other relevant factors is crucial for effective treatment. A comprehensive evaluation of the patient's overall health is necessary to develop an individualized treatment plan. By implementing personalized strategies and closely monitoring blood sugar levels, healthcare providers can optimize blood sugar management in CKD patients, ultimately enhancing their overall well-being and quality of life. The tailored approach to blood sugar management is a pivotal component in improving the health outcomes of individuals with advanced CKD and kidney failure. (Bergman *et al.* 2020) (Casadei *et al.* 2021) (Copur *et al.* 2020) (Karayiannides *et al.* 2021) (Holland *et al.* 2023) (Schlueter *et al.* 2022) (Wong *et al.* 2020) (Malaba *et al.*, 2024) (Wisniewski *et al.* 2024) (Seyed *et al.* 2020).

1.2 Scope and Objectives

Due to the continuous and relentless increase in the number of individuals afflicted by the highly debilitating condition of diabetes, it comes as no surprise that the prevalence of chronic kidney disease, specifically diabetic nephropathy, has experienced an unprecedented and exponential surge. As a direct consequence of this alarming trend, the primary objective of this groundbreaking study is to delve profoundly into the intricacies and complexities surrounding blood sugar levels in patients who are plagued by the dire consequences of kidney failure. By meticulously and painstakingly analyzing a plethora of diverse factors, including but not limited to gender, age, creatinine levels, and urea levels, our ultimate aim is to brilliantly illuminate and elucidate the highly intricate and interwoven relationship that exists between blood sugar levels and these aforementioned variables. Furthermore, we relentlessly seek to compare and contrast fasting levels with post-prandial levels in order to discern and identify any potential or noteworthy disparities, discrepancies, or variances that may exist between these two distinct time frames. Moreover, we passionately endeavor to meticulously scrutinize and assess the correlation that is undoubtedly and irrefutably present between blood sugar levels and other vital and indispensable markers of overall health and well-being, such as blood pressure, cholesterol, triglycerides, and body mass index. It is through this comprehensive and all-encompassing approach that we hope to gain invaluable insights and unrivaled knowledge regarding the multifaceted landscape of blood sugar levels and its indelible impact on the overall health status of these afflicted patients.

Remarkably, the astonishing and riveting results that emanate from the culmination of this study conclusively reveal a truly intriguing and captivating finding - hyperglycemia in patients who are saddled with the disheartening and advanced stages of kidney failure can, without a shadow of a doubt, precipitate and hasten a rapid decline in the overall health and well-being of these individuals once they commence treatment and intervention. Astonishingly, it has been brought to light that previous scientific and academic endeavors have astonishingly and perplexingly overlooked and neglected the crucial role that high fasting blood sugar levels play as potent, potent predictors of blood glucose levels, both in diabetic and non-diabetic subjects, juxtaposed and compared to their post-prandial blood glucose counterparts. Intriguingly and rather surprisingly, it has been discovered that certain earlier investigations have inexplicably and surprisingly drawn the rather perplexing and bewildering conclusion that fasting levels woefully lack any substantial diagnostic value whatsoever. However, in stark contrast and against all odds, each and every single one of the previous studies conducted and completed thus far undeniably, consistently, and unequivocally indicate and suggest that the intricate interplay and finely tuned balance that exists between cholesterol or triglyceride levels, blood pressure, and glucose levels is the very foundation and cornerstone that underlies and typifies the predominant and underlying metabolic disturbances and irregularities that are inevitably present within the body. Thus, this glaringly underscores and highlights the paramount and unparalleled importance and significance of meticulously and vigilantly monitoring and assessing these crucial variables. In addition, it has been astutely observed and discerned that patients who are grappling with the onset and initial stages of diabetes invariably tend to exhibit significant and palpable deviations, fluctuations, and deviations from the norm in blood pressure, cholesterol, and triglyceride levels, thus further cementing and solidifying the vital and invaluable role that these markers possess when it comes to monitoring, tracking, and assessing the initiation and progression of the disease. Furthermore, it is worth noting that emerging research has shed light on the potential influence of genetic predisposition on the manifestation and severity of these metabolic imbalances, indicating the need for further investigation in order to better comprehend the underlying mechanisms and individual variations in patient response. Ultimately, gaining a comprehensive understanding of the multifactorial nature of blood sugar levels in the context of kidney failure will undoubtedly pave the way for more effective treatment strategies and improved patient outcomes, placing us one step closer to achieving optimal health and well-being for those burdened by this detrimental condition. (Ling et al., 2022) (Thomas, 2021) (Ravender et al. 2024) (DeFronzo $et\ al.$, 2021) (Patel $et\ al.$ 2020) (Navaneethan $et\ al.$ 2021) (Usman $et\ al.$, 2021) (Pavkov $et\ al.$, 2021) (Provenzano $et\ al.$ 2022) (Barrera-Chimal and Jaisser 2020).

Unit - 2

Anatomy and Physiology of the Kidneys

The kidneys are vital organs located just below the ribcage, conveniently positioned for easy access during ultrasound-guided procedures. If we were to take a cross-section of the kidneys, we would observe three distinct regions: the outer renal cortex, the inner medulla, and the renal pelvis. The renal pelvis receives urine from the papillae of the medulla, while the renal nephrons, numbering between 1 and 1.4 million in each kidney, play a crucial role in the filtration and modification of blood. The renal glomerulus within each nephron acts as a filtering unit, removing waste products and excess fluids from the bloodstream. This ultrafiltrate then proceeds through a network of tubules, where it undergoes reabsorption and secretion processes to further fine-tune its composition. The glomerulus is supplied by an afferent arteriole that enters and an efferent arteriole that exits it. Of note, the afferent arteriole has a slightly larger diameter than the efferent arteriole, resulting in elevated glomerular capillary blood pressure. This unique setup allows for efficient filtration. On a daily basis, the glomerulus filters an impressive volume of blood, approximately 300-400 times, generating a whopping 180 liters of glomerular filtrate. However, this initial filtrate is not the final urine output. The renal tubules, through their intricate processes, continue to modify the fluid, resulting in the production of a more concentrated urine output, typically ranging from 1 to 3 liters per day based on individual factors such as fluid intake and hydration status. The flow of blood through the glomerulus is carefully regulated by various mechanisms. Both the afferent and efferent arterioles can undergo vasoconstriction or vasodilation, modulated by local autoregulatory systems. These systems ensure that blood flow to the inner regions of the kidney remains optimal, similar to the autoregulation seen in the brain-blood barrier. Additionally, the kidneys receive sympathetic innervation and hormonal influences that further contribute to the regulation of renal perfusion. The kidneys serve as vital contributors to maintaining homeostasis within the body. One of their primary roles is fine-tuning blood pressure through volume regulation, accomplished by controlling sodium and water balance. Furthermore, the kidneys produce substances such as endothelin and angiotensin II, which possess vasopressor properties. These substances aid in adjusting blood pressure levels as needed. Moreover, the kidneys exhibit endocrine functions by producing essential hormones. In response to low oxygen levels in the surrounding tissue, they synthesize erythropoietin, a hormone that stimulates the production of red blood cells in the bone marrow. Additionally, the kidneys produce renin, a protease that initiates the production of angiotensin II in the renin-angiotensin-aldosterone system (RAAS), in response to low blood pressure and low capillary blood sodium concentration. Angiotensin II, a potent hormone, elicits systemic vasoconstriction and further regulates blood pressure. The RAAS also plays a crucial role in maintaining electrolyte balance within the body. Aldosterone, produced in the adrenal glands' zona glomerulosa, collaborates with angiotensin II to enhance sodium reabsorption from the renal tubules while simultaneously promoting potassium excretion in urine. By comprehending the intricate relationship between sodium and potassium excretion in urine, along with the dynamic activity of local hormonal and autoregulatory systems, experts gain valuable insights into kidney functionality. The ability to visualize and understand the malfunctioning of these organs is of utmost significance. This study serves as a prime example of utilizing visualization techniques to unravel the complexities and aberrations associated with kidney function. The kidneys' incredible ability to maintain fluid and electrolyte balance, regulate blood pressure, and produce essential hormones showcases their physiological importance. Truly, these remarkable organs are vital for the overall health and homeostasis of the human body. (Doi et al. 2022) (RATE, 2023) (Adhipandito et al. 2021) (Balbotkina and Kutina 2023) (Vallon & Thomson, 2020) (Zsom et al., 2022).

3.1 Structure and Function of the Kidneys

The kidneys, also known as the renal organs, are positioned at the posterior part of the abdominal cavity, deeply embedded within a dense network of connective tissue. They are effectively shielded and protected by the robust lower ribs, ensuring their safety. Interestingly, the right kidney, although slightly lower than its counterpart, is strategically nestled adjacent to the liver, which is situated on the right side of the body. This arrangement optimizes the space utilization within the abdominal region. Both kidneys are delicately ensconced within a protective layer of renal adipose tissue, which acts as a cushion against potential mechanical trauma that may attempt to disrupt their vital functions.

Despite their relatively small size and the limited physical space they occupy, these remarkable organs possess an exceptional degree of vascularity. This high vascularity significantly contributes to their crucial role within the

intricate anatomical framework of the human body. In fact, the kidneys play an integral role in the process of metabolism. One of their primary functions is the excretion of nitrogenous waste products, such as urea, creatinine, and uric acid. Through this process, the kidneys exhibit their remarkable ability to eliminate harmful substances that can accumulate within the body.

Additionally, these ingenious organs possess the enviable power to regulate the concentration of electrolytes present in our precious bodily fluids. This electrolyte regulation ensures the proper balance and functioning of various bodily systems. Moreover, the kidneys actively participate in the fine art of pH regulation. They have the extraordinary capacity to excrete acidic and basic substances, effectively maintaining the delicate balance of our body's vital fluids. This pH regulation is crucial for the overall well-being and optimal functioning of the human body.

Parallel to these extraordinary duties, the kidneys also demonstrate their prowess in water excretion. They play an irreplaceable role in regulating the water content within our bodily fluids, ensuring the proper hydration and fluid balance necessary for our overall health and well-being. In embracing their brilliance, the kidneys confidently embrace additional crucial responsibilities within the grand tapestry of human existence.

These magnificent organs possess an innate endocrine function, contributing to the regulation of blood pressure. They deftly control the delicate process of erythropoiesis, which is responsible for the production of red blood cells. This ensures that the creation of these vital cells proceeds harmoniously, supporting the body's oxygen-carrying capabilities. Remarkably, the kidneys seamlessly incorporate a comprehensive urinalysis into their repertoire. This unique ability allows for the accurate diagnosis and evaluation of renal diseases and conditions.

Each of these intricate kidney functions intertwines to provide vital insights into our internal health. By analyzing various components and characteristics of urine, medical professionals can gather valuable information about the overall health and functioning of the kidneys, as well as other aspects of the body. In conclusion, the kidneys, with their intricate design and multifaceted capabilities, play an indispensable role in maintaining the overall harmony and balance of the human body. They excel in the excretion of waste products, regulation of electrolytes, pH balance, water excretion, blood pressure regulation, erythropoiesis, and the comprehensive examination and assessment of urine for medical purposes.

Additionally, the kidneys offer invaluable insights into our internal health

through the process of urinalysis. Truly, these exceptional organs deserve admiration and appreciation for their vital contributions to our well-being. Their ability to safeguard our body's delicate equilibrium and ensure optimal functioning is truly awe-inspiring. Without a doubt, the kidneys are a testament to the remarkable complexity and brilliance of the human body. (Imenez and Mohebbi 2022) (Brennan *et al.* 2021) (Gronda *et al.* 2020) (Zhang *et al.* 2021) (Podrini *et al.*, 2020) (Qi *et al.*, 2021) (Zheng *et al.*, 2021).

Unit - 3

Diabetes and Kidney Failure

"Diabetes and Kidney Failure" - When the pancreas doesn't produce enough insulin or doesn't use that insulin appropriately, the blood sugar levels rise significantly. This condition, known as glucose in blood "diabetes" (Diabetes mellitus), can occur in three ways. First is type 1 diabetes, which happens when the immune system destroys the β cells responsible for producing insulin. Second is type 2 diabetes, which occurs due to insulin resistance and relative insulin deficiency in dysfunctional β cells. Finally, there are specific causes of diabetes. While both types of diabetes cause damage throughout the body, kidney injuries are particularly common. Diabetic nephropathy, a condition where the kidneys are damaged due to diabetes, is the leading cause of end-stage renal disease worldwide. The initial symptoms include the thickening of the glomerular basement membrane and mesangial expansion. As the disease progresses, serious glomerular lesions can develop, ultimately leading to renal fibrosis. Although controlling glycemia and blood pressure are important parts of treatment, they do not halt the progression of diabetic kidney disease in either type 1 or type 2 diabetes. Therefore, scientists and researchers are focusing on developing treatments that can prevent or treat kidney disease in both types of diabetes. They have found that oxidative stress plays a significant role in the generation of injuries that contribute to the progression of chronic kidney disease, especially in diabetic patients.

Further, since oxidative stress is initially low and can persist for a long time before developing into end-stage disease, researchers believe that antioxidant application could prevent the progression of diabetic nephropathy. Antioxidant dioxide nanoparticles, in particular, are being studied extensively for the treatment of type 2 diabetes. These nanoparticles have shown strong renoprotective and antifibrotic properties by reducing oxidative stress levels. Given its potential, the development of nanoparticles is considered a novel approach for future therapies in both types of diabetes.

As a result, extensive research is being conducted to improve the efficacy of antioxidant therapy for kidney disease associated with diabetes. Numerous studies have indicated that oxidative stress plays a critical role in the development and progression of chronic kidney disease, especially in individuals with diabetes. By reducing oxidative stress, antioxidants have the potential to halt or slow down the advancement of diabetic nephropathy. Specifically, antioxidant dioxide nanoparticles have demonstrated impressive renoprotective and antifibrotic properties, highlighting their effectiveness in mitigating oxidative stress.

In this regard, the development of nanoparticles holds great promise for future therapies targeting diabetic kidney disease in both type 1 and type 2 diabetes. The utilization of nanoparticle technology in diabetes treatment represents a significant breakthrough in medical research, with scientists and researchers actively exploring its full potential. Building upon the initial success of antioxidant dioxide nanoparticle studies, further advancements are being pursued to refine and enhance the therapeutic effectiveness of these nanoparticles.

The applications of nanoparticles extend beyond oxidative stress reduction, as researchers anticipate multifaceted benefits such as targeted drug delivery and precise gene editing. The versatility of nanoparticles presents an unprecedented opportunity to revolutionize diabetes treatment, ushering in a new era where kidney disease in diabetic patients can be proactively managed and combated.

The continuous discoveries and innovations in nanoparticle-based therapies shed light on the intricate complexities of diabetes and kidney failure, instilling hope and paving the way for advancements in healthcare. The unwavering dedication of scientists and researchers in pioneering breakthroughs underscores the transformative potential of nanoparticle technology, propelling us toward the horizon of possibilities in comprehensively treating diabetes and its associated complications.

Through a multidisciplinary approach encompassing genetics, immunology, and nanomedicine, the intricate mechanisms underlying diabetic nephropathy are gradually being unraveled. This newfound knowledge serves as the foundation for the development of targeted nanoparticle interventions that hold tremendous promise in the fight against kidney disease. The convergence of cutting-edge technology and medical science opens unparalleled opportunities to address the challenges posed by diabetes, empowering both physicians and patients.

The realm of nanomedicine delves deeper into personalized medicine tailored to individual patient needs, bringing tangible prospects within reach. Nanoparticles have the potential to revolutionize drug delivery, allowing for precise and controlled distribution of therapeutic agents at the site of action. Leveraging the unique properties of nanoparticles, such as size, composition, and surface modifications, researchers are poised to overcome the limitations of conventional therapies for diabetic kidney disease.

The development of nanoparticle-based systems that can specifically target the damaged structures in diabetic nephropathy represents exciting new avenues for effective interventions. Beyond drug delivery, nanoparticles offer a platform for engineering innovative diagnostic tools to detect and monitor kidney disease progression at an early stage. Capitalizing on the inherent capabilities of nanoparticles, such as enhanced imaging contrast and high-sensitive biomarker detection, novel diagnostic approaches are being explored. These advancements hold the potential to revolutionize the clinical management of diabetic kidney disease, enabling early intervention and personalized treatment strategies.

The continuous evolution of nanoparticle technology in the field of diabetes and kidney failure underscores the tireless pursuit of advancements in medical research. Each breakthrough pushes the boundaries of understanding, paving the way for innovative therapies that have the potential to revolutionize patient care. As researchers strive to unravel the complexities of diabetes and its multifaceted effects on the kidney, nanoparticle-based interventions emerge as beacons of hope in a challenging landscape.

The path to a brighter future in diabetes management is illuminated by nanoparticle discoveries, propelling us toward a realm where targeted, efficient, and personalized treatments become the standard. (Cheng *et al.*, 2021) (Sagoo & Gnudi, 2020) (Hoogeveen, 2022) (Pelle *et al.* 2022) (Samsu, 2021) (Thipsawat, 2021) (Aziz *et al.* 2022) (Tu *et al.*, 2021) (Hussain *et al.* 2021) (Vodošek Hojs *et al.*, 2020).

4.1 Epidemiology and Prevalence

India bears a significant burden of diabetes and chronic kidney disease (CKD), and there is a growing population of young patients who require kidney transplantation. The International Diabetes Federation (IDF) recognizes India as the global hub for diabetes, reflecting the alarming rates of the disease in the country. Additionally, India witnesses a rise in cardiovascular disease-related deaths, potentially attributed to undiagnosed diabetes, further emphasizing the urgency of early detection and management. This calls for comprehensive approaches to tackle the impact of diabetes and CKD on the population's health.

The accurate estimation of blood sugar levels is vital for the diagnosis

and treatment of diabetes. In this regard, the measurement of fasting blood glucose (FBG) and post-prandial random blood glucose (RBG) has proven to be instrumental. However, given the complex nature of diabetes and CKD, it is essential to explore more advanced techniques to assess blood sugar control. One such technique is the measurement of glycated hemoglobin (HbA1c), which provides a comprehensive overview of blood sugar levels over an extended period. By assessing the correlation between conventional blood sugar levels and HbA1c test results in patients with chronic kidney disease, healthcare professionals can gain valuable insights into the effectiveness of current diagnostic methods and treatment approaches. This knowledge could potentially lead to improved management strategies and better outcomes for individuals with diabetes and CKD.

Considering the higher prevalence of diabetes mellitus in chronic kidney disease patients, there is a critical need to integrate routine renal function tests into diabetes screening protocols for this population. By identifying individuals at risk of developing diabetes at an early stage, healthcare providers can intervene promptly and implement preventive measures. This proactive approach not only improves the quality of life for patients but also reduces the overall burden on healthcare systems.

Furthermore, in patients experiencing kidney failure conditions, exploring the relationship between serum urea/creatinine levels and blood sugar levels holds promise. Understanding this correlation may offer additional insights into predicting blood sugar control in individuals with impaired renal function. By leveraging this knowledge, healthcare professionals can tailor treatment plans and interventions to address the unique challenges faced by patients with diabetes and kidney failure.

In conclusion, this study aims to bridge the gap between conventional blood sugar measurements and more advanced techniques like HbA1c testing in patients with chronic kidney disease. By assessing the correlation between these parameters and exploring the predictive value of serum urea/creatinine levels, we can enhance our understanding of diabetes management in the context of CKD. Ultimately, this research seeks to contribute to the development of personalized approaches to diabetes care, improving outcomes and quality of life for individuals in India and beyond. India's extraordinary burden of diabetes and chronic kidney disease (CKD) necessitates urgent attention. The International Diabetes Federation (IDF) identifies India as the global diabetes hub, signaling the country's alarming disease rates. Undiagnosed diabetes has also fueled an increase in cardiovascular disease-related deaths, highlighting the dire need for early

detection and management. Consequently, comprehensive initiatives are required to address the far-reaching impact of diabetes and CKD on public health.

Accurate blood sugar level estimation carries immense importance for the diagnosis and treatment of diabetes. The measurement of fasting blood glucose (FBG) and post-prandial random blood glucose (RBG) has served as a valuable tool. However, due to the intricate nature of diabetes and CKD, exploring advanced techniques is crucial to assessing blood sugar control. Among these techniques, measuring glycated hemoglobin (HbA1c) yields a holistic picture of blood sugar levels over an extended duration. By examining the correlation between conventional blood sugar levels and HbA1c test results in patients with chronic kidney disease, healthcare professionals can gain invaluable insights into the efficacy of current diagnostic methods and treatment strategies. This newfound knowledge has immense potential to enhance management techniques and improve outcomes for individuals suffering from diabetes and CKD.

Given the heightened prevalence of diabetes mellitus in chronic kidney disease patients, incorporating routine renal function tests into diabetes screening protocols for this population is imperative. Identifying individuals at risk of developing diabetes at an early stage empowers healthcare providers to intervene promptly and implement preventive measures. This proactive approach improves patient quality of life and alleviates the burden on healthcare systems.

Additionally, exploring the relationship between serum urea/creatinine levels and blood sugar levels in individuals experiencing kidney failure shows promise. Understanding this correlation can provide further insights into predicting blood sugar control in those with impaired renal function. Armed with this knowledge, healthcare professionals can tailor treatment plans and interventions to address the unique challenges faced by patients with diabetes and kidney failure.

In conclusion, this study seeks to bridge the gap between conventional blood sugar measurements and more advanced techniques like HbA1c testing in patients with chronic kidney disease. By evaluating the correlation between these parameters and exploring the predictive value of serum urea/creatinine levels, we can advance our understanding of diabetes management within the context of CKD. Ultimately, this research aims to contribute to the development of personalized approaches to diabetes care, thereby enhancing outcomes and quality of life for individuals not only in India but also across

the globe. (Raman et al. 2022) (Ramachandran et al. 2020) (Anjana et al. 2022) (Narayan et al. 2023) (Banker et al. 2021) (Anjana et al. 2023) (Yasmin et al. 2022) (Kesavadev et al. 2021) (Fazaludeen et al. 2022) (Rajaa et al. 2021).

Unit - 4

Blood Sugar Regulation Mechanisms

Today's science tells us a great deal about the remarkable regulatory system that ensures the meticulous maintenance of blood sugar levels at their justified and optimal level. This highly sophisticated system fuels the energy demand of all bodily functions and is governed by two crucial pancreatic hormones, namely insulin and glucagon. Together, these hormones work in tandem to regulate blood sugar levels and maintain a delicate balance within the body. As we already know, it is absolutely vital for blood sugar concentration to stay within accepted limits. When the concentration increases above the characterized level, it triggers a series of responses in our cells. If the increase in blood sugar concentration is relatively insignificant, the pancreas produces insulin and sodium as a response. The received message is perceived, and glucose is absorbed and promptly utilized by the cells. This helps to restore the blood sugar concentration to a healthy range. However, if the increase in blood sugar concentration is more remarkable, the pancreas secretes the hormone glucagon, which triggers the retention of sodium, potassium, and glucose. In doing so, the blood sugar concentration is effectively reduced to a lower and acceptable level. If the blood sugar concentration remains stable within the normal range, the cells and the production of glucagon hormone are regulated accordingly, thus preventing any further deviation. But what happens when this seemingly simple yet intricate regulatory mechanism breaks down?

This breakdown occurs in the case of diabetes, a condition in which the body's ability to effectively regulate blood sugar levels becomes impaired. Diabetes can manifest in different ways, but one common form is insulindependent diabetes, also known as type 1 diabetes. In this condition, the beta cells in the islets of Langerhans, which are responsible for insulin secretion, either stop producing insulin altogether or have an excessive number of beta cells and glucagon. This disruption significantly upsets the delicate balance between insulin and glucagon, leading to a dysregulated state.

To restore harmony to this disrupted system, a tablet of useful regulation is employed in the form of medical interventions. In cases of insulin-

dependent diabetes, regular insulin administration through injections becomes a vital component of the treatment. These injections serve as a substitute for the body's own insulin, which is no longer produced in sufficient quantities. By regularly administering insulin through injections, the nullified function of the pancreas can be compensated, enabling individuals with diabetes to effectively manage their blood sugar levels and regain control over their health. This therapeutic approach typically becomes a lifelong commitment, ensuring that the body receives the necessary insulin to fuel essential bodily functions and maintain the delicate balance required for optimal health. However, managing diabetes is not a simple task limited to medication alone. It requires a comprehensive approach that encompasses various aspects of an individual's lifestyle.

Lifestyle modifications, dietary adjustments, and meticulous monitoring are essential components of effective diabetes management. Individuals with diabetes must continuously assess their blood sugar levels, make informed choices regarding their diet, and engage in regular physical activities to support their overall well-being. By adopting this multifaceted strategy, individuals with diabetes can restore the intricate dance between insulin and glucagon, alleviate the disruptions, and promote optimum health. The field of diabetes management continues to advance as scientific knowledge expands and medical professionals tirelessly work to develop more effective strategies. With each new discovery, we gain a deeper understanding of diabetes and its complexities. These advancements empower us to develop innovative approaches to support those affected by diabetes and provide them with the tools they need to lead fulfilling lives.

Although diabetes presents challenges, with proper care, diligent self-management, and access to appropriate medical interventions, individuals with diabetes can navigate the intricacies of blood sugar regulation and thrive in the face of adversity. As our knowledge expands, so too does our ability to empower individuals with diabetes, enabling them to take control of their health and confidently face the future. The continuous advancements in diabetes management not only benefit the individuals with diabetes but also have a wider impact on public health. By understanding the intricate workings of the regulatory system and developing more effective interventions, we have the potential to reduce the prevalence of diabetes and its associated complications. This can lead to improved overall health outcomes, decreased healthcare costs, and enhanced quality of life for millions of people worldwide.

As we delve deeper into the complexities of diabetes, we uncover new

possibilities for prevention, early detection, and personalized treatment approaches. Through ongoing research and collaboration, we are unlocking the potential to revolutionize diabetes management and ultimately find a cure for this chronic condition. By expanding our understanding and investing in scientific advancements, we can pave the way for a future where diabetes no longer presents a significant burden on individuals, healthcare systems, and society as a whole. This future holds great promise, bringing hope to those affected by diabetes and offering a brighter and healthier tomorrow. The possibilities are endless, and by continuously expanding our knowledge and pushing the boundaries of innovation, we can make a lasting impact on the lives of countless individuals. (Huising, 2020) (Thorens, 2024) (Wendt & Eliasson, 2022) (Nirmalan & Nirmalan, 2020) (Campbell & Newgard, 2021) (Svendsen & Holst, 2021) (Andersen & Holst, 2022) (Tabassum *et al.* 2021) (Crecil Dias *et al.*, 2020) (Robertson, 2023).

5.1 Insulin and Glucagon

Just as in other patients with diabetes mellitus, insulin is the principal hormone regulating carbohydrate metabolism in patients with kidney failure when carbohydrate is the major source of energy and blood sugar levels are maintained within the range of 60 to 160 milligrams per cent. The pancreas of patients with kidney failure synthesizes and secretes an abnormality of insulin which results in the frequent need for insulin administration to patients with insulin-requiring diabetes and significant abnormalities of carbohydrate metabolism. A striking and concerning feature of uranium nephritis and of acute intoxication with uranium salts is the complete destruction and obliteration of the insulin-expressing cells of the pancreas, leading to a complete disruption and cessation of insulin production and secretion. This disruption in insulin production and secretion results in severe and uncontrolled dysregulation and disturbance of carbohydrate metabolism, necessitating constant insulin administration to manage and regulate blood sugar levels effectively and avoid any potential complications that may arise from unstable blood sugar levels. In patients with both acute and chronic kidney failure, the metabolism of injected insulin (autoregulation) is strikingly reduced and depressed, glycogen storage is severely diminished and compromised, and the intracellular uptake of 14C-glucose and 14Caminoisobutyrate by blood, blood vessels, and certain organs such as the brain, eye, and liver, is greatly curtailed and impeded. These metabolic abnormalities highlight and emphasize the significant impact, influence, and consequences of kidney failure on the utilization, utilization efficiency, and storage of glucose and other essential nutrients necessary for normal physiological and metabolic processes.

While the metabolism of other organs and the balance of K/Na, Cu, and P levels remain unaltered, unaffected, and unchanged, it is important to note that the metabolism of glucagon injected in large amounts and pharmacological doses is also delayed and slowed down. This further exacerbates and contributes to the already present dysregulation and impairment of carbohydrate metabolism, making it even more challenging and difficult to manage and maintain stable blood sugar levels. The underlying cause, precipitating factor, and primary mechanism responsible for these kidney failure and diabetes syndromes associated with heavy metal intoxication, particularly uranium, lies in the loss or malfunction of a specific, crucial, and indispensable molecular structure with which glucagon and insulin interact. This molecular structure appears and seems to be a membrane-bound protein moiety, playing a pivotal and vital role in the regulation, modulating, and governing of the metabolism of certain substances essential, indispensable, and requisite for normal physiological functions and processes within the realm of carbohydrate metabolism.

Furthermore, the impairment and dysfunction of an endoderm derivative with a common structure and common transmitting property serve and act as a contributing factor to the development, onset, and manifestation of these syndromes characterized and marked by kidney failure and diabetes-like symptoms. It is the multifaceted, intricate, and synergistic interplay and interconnection between these molecular and structural abnormalities, distortions, and aberrations that ultimately gives rise to the emergence of kidney failure, as well as the associated and accompanying symptoms and complications resembling and resembling those of diabetes. Despite the significant advancements, progress, and breakthroughs in medical understanding, knowledge, and research, insulin therapy remains and continues to be the mainstay, cornerstone, and foundation for the treatment and management of abnormal carbohydrate metabolism associated and linked with kidney failure.

By providing and administering exogenous or external insulin, healthcare professionals and medical practitioners are able and capable of regulating, controlling, and stabilizing blood sugar levels and mitigating the adverse and detrimental effects, consequences, and complications arising and emerging from impaired and inadequate insulin production and secretion, as well as dysregulated and disturbed carbohydrate metabolism. Although ongoing and continuous research, exploration, and investigation aim to identify, discover, and develop alternative and supplementary treatments, interventions, and strategies to improve patient outcomes, enhance quality of life, and alleviate

the burden and impact of this complex and intricate syndrome, it is indisputable and undeniable that insulin administration persists and endures as the most effective, successful, and reliable approach, method, and technique in managing, treating, and addressing this intricate and multifaceted syndrome and its associated symptoms and complications.

Therefore, it is crucial to prioritize and prioritize the regular monitoring, adjustment, and optimization of insulin therapy to ensure and maintain adequate and optimal blood sugar control, thereby preventing or minimizing both acute and chronic complications associated with uncontrolled hyperglycemia or hypoglycemia. This necessitates close collaboration and communication between healthcare professionals, patients, and their caregivers to establish personalized treatment plans, considering individual needs, preferences, and goals. Alongside insulin therapy, other lifestyle modifications, such as adopting a healthy diet, regular physical activity, and weight management, are fundamental in achieving optimal glucose control and overall well-being. Additionally, patient education and support programs play a critical role in empowering individuals with knowledge, skills, and selfmanagement strategies to effectively navigate and cope with the challenges of living with kidney failure and insulin-requiring diabetes. With comprehensive and multidisciplinary care, individuals can lead fulfilling and productive lives while effectively managing their condition and reducing the risk of complications. Together, with advancements in medical research and holistic care approaches, the future holds promise for improved outcomes and enhanced quality of life for individuals with kidney failure and insulinrequiring diabetes. (Pina et al. 2020) (Nakashima et al., 2021) (Gronda et al. 2020) (Rahman et al. 2021) (Dimitriadis et al. 2021) (Legouis et al. 2022) (Wen et al., 2021) (Marchelek-Myśliwiec et al. 2020).

Impact of Kidney Failure on Blood Sugar Levels

Kidney failure, also known as renal failure, is a medical condition in which the kidneys are unable to function properly. It can have various effects on the body, including changes in blood glucose levels. Interestingly, in some cases, individuals with impaired kidney function exhibit unusual glucose accumulation patterns. Instead of having higher levels of glucose in their blood, these patients actually accumulate less glucose than expected. As a consequence, their blood sugar levels tend to be lower than anticipated, particularly during fasting periods. This unexpected phenomenon requires careful consideration and management to ensure optimal health outcomes for individuals with renal failure.

Another noteworthy aspect is the impact of certain medications used to treat high blood sugar levels in individuals with kidney failure. Due to the impaired kidney function, these medications are eliminated from the bloodstream at a slower rate, resulting in prolonged effects. Consequently, there is a reduced accumulation of glucose in the blood. This can lead to a condition called hypoglycemia, which is characterized by abnormally low blood sugar levels. It is worth noting that hypoglycemia can occur despite the individuals receiving treatment for diabetes mellitus. In such cases, the patients may require a lower dose of antidiabetic medication to avoid complications associated with low blood sugar levels.

Fortunately, the management of individuals with renal failure has significantly evolved over the years. Close monitoring of symptoms and regular assessments of kidney function are essential for effective management. Additionally, developing an individualized approach to their diet is crucial to prevent episodes of hypoglycemia. Unlike a typical diabetic diet, their dietary plan should be adjusted to ensure they receive sufficient sugar intake to maintain stable blood sugar levels. This personalized approach promotes better control of glucose levels and overall health.

Considering the administration of insulin to patients with renal failure, there are certain factors that must be considered. Insulin, when injected into the subcutaneous tissue, can bind to subcutaneous fat. In patients with renal failure, the hypoglycemic effect of insulin tends to last longer than expected, necessitating careful monitoring and adjustment of insulin doses. This aspect can complicate the establishment of a continuous subcutaneous insulin dose based on plasma glucose concentration. Finding the optimal dosing regimen becomes challenging. However, it is possible that utilizing long-acting insulin, administered once every 24 hours, or using Lente insulin on a daily basis, could be more efficient for both hemodialysis patients and those with normal renal function. Further research is required to determine the most effective insulin administration protocols for individuals with renal failure and to enhance their overall management.

Lastly, considering the prevalence of renal failure among the clientele of many community hospitals, studies exploring the aforementioned topics are highly warranted. As approximately 20-25% of individuals in these hospitals suffer from renal failure, it is essential to further investigate and understand the implications of kidney dysfunction on blood glucose management and insulin administration protocols. Therefore, comprehensive research should be conducted to elucidate the underlying mechanisms and develop tailored interventions to optimize the health outcomes of patients with kidney failure. These research endeavors will undoubtedly contribute to the advancement of medical knowledge and improve the overall quality of care provided to individuals with renal failure. By addressing the complex interplay between renal function, glucose regulation, and medication management, healthcare professionals can enhance the well-being and quality of life for patients with renal failure. (Verissimo et al. 2022) (Ito et al., 2022) (Akhtar et al. 2020) (Wang et al. 2022) (Faivre et al. 2021) (Galindo et al. 2020) (Meléndez-Salcido et al. 2022) (Di et al. 2020) (Fan et al. 2024).

6.1 Renal Gluconeogenesis

Regional production of glucose by the kidney in excess of the glucose required by the kidney's own metabolism is defined as renal gluconeogenesis (RNG). RNG has been increasingly recognized to be an important process that may contribute to systemic hyperglycemia in a variety of conditions. The basic experimental strategy that has been utilized in identifying the kidney's role in newly synthesized glucose production is the sampling of renal vein blood in various conditions when compared with renal artery blood during fasting conditions. This process has been particularly well studied in rodent models. The importance of the kidney in this context depends on whether or not there is a direct increase in the kidney's capacity for renal gluconeogenesis, an indirect effect wherein the kidney's mass of glucose production increases and therefore equally contributes with the liver to the generation of new glucose

or even a contribution where the kidney is a far more important contributor than the liver to systemic glucose homeostasis. The studies that have utilized tracer techniques that allow for the direct measurement of renal gluconeogenesis have documented the most rigorous evidence in support of the flux of glucose from the kidney.

Renal gluconeogenesis, the process by which the kidney produces glucose in amounts surpassing its own metabolic needs, plays a vital role in contributing to systemic hyperglycemia across varied conditions. To identify the kidney's involvement in glucose production, researchers have employed a fundamental experimental approach that involves sampling blood from the renal vein under different circumstances in comparison to blood extracted from the renal artery during fasting. This investigative method has been extensively explored in rodent models, shedding light on the significance of the kidney's function. The importance of the kidney in this regard hinges on several possibilities: a direct increase in the kidney's capacity for renal gluconeogenesis, an indirect effect where the kidney's glucose production mass expands, thereby equally contributing to the liver's production of new glucose, or even a scenario where the kidney emerges as the primary contributor to systemic glucose homeostasis, outpacing the liver. Studies employing tracer techniques capable of directly measuring renal gluconeogenesis have presented compelling evidence endorsing the flow of glucose from the kidney. The findings of these studies provide strong support for the notion that the kidney plays a crucial role in glucose production during states of fasting and hyperglycemia.

Understanding the mechanisms underlying renal gluconeogenesis may open up new avenues for the development of targeted therapies aimed at manipulating glucose metabolism and managing conditions such as diabetes more effectively. Further research in this field is warranted to fully elucidate the extent of the kidney's contribution to systemic glucose homeostasis and its potential implications for the treatment of metabolic disorders. Advancing our understanding of renal gluconeogenesis has far-reaching implications for the field of medicine, offering promising prospects for the development of innovative interventions that can optimize glucose regulation and improve the management of metabolic disorders. By uncovering the intricate mechanisms that govern this process, researchers can pave the way for the creation of novel therapeutic approaches that specifically target glucose metabolism in the kidney. By harnessing this knowledge, healthcare professionals could potentially revolutionize the treatment of conditions such as diabetes, leading to improved outcomes and enhanced quality of life for individuals affected by these conditions.

As the field progresses, it becomes increasingly evident that renal gluconeogenesis represents an intriguing area of exploration with immense clinical significance. The pursuit of further studies in this domain will undoubtedly unravel new insights, fueling advancements in our understanding of glucose homeostasis and opening up exciting possibilities for improved therapeutic strategies in the future. This, in turn, has the potential to bring about substantial improvements in the management of metabolic disorders and enhance overall patient well-being. The complex interplay between the kidney and glucose metabolism establishes the foundation for continued research and the pursuit of innovative treatment modalities. Expanding our knowledge in this field holds promise for novel interventions that can effectively target renal gluconeogenesis, ultimately leading to optimized glucose regulation and improved clinical outcomes. By delving deeper into the intricacies of this intricate process, healthcare professionals can strive toward the development of groundbreaking therapeutic approaches that specifically address the manipulation of glucose metabolism within the kidney. Such advancements have the potential to revolutionize the management of metabolic disorders, including diabetes, elevating the quality of life for those affected and paving the way for a brighter, healthier future. (Sharma & Tiwari, 2021) (Legouis et al. 2022) (Verissimo et al. 2022) (Ansermet et al. 2022) (Nakamura et al. 2022) (Dalga et al., 2023) (Fernandes, 2021) (Hatano et al. 2024).

Diagnostic Methods for Blood Sugar Levels

Blood glucose can be measured using capillary, venous, or arterial samples. The capillary sample is usually taken from the finger pad and is primarily used by individuals with diabetes for self-measuring the glucose. Venous and arterial blood glucose data have distinct clinical implications depending on the clinical situation of the patient. The venous blood glucose reflects the concentration at which all cells are bathed. It can be obtained from the radial artery or any superficial or central vein. On the other hand, the arterial blood glucose reflects the actual concentration with the ongoing metabolism. It is commonly used in patients during anesthesia and ICU monitoring. However, in emergency and intensive care situations, it is also utilized to measure venous blood glucose concentration. The serum values of the arterial blood differ from the glucose values of the venous blood or the capillary blood. Additionally, it is important to note that hemolytic samples must not be used to determine the glucose or lactate content of blood as the sample either has no value or provides limited value due to the mixture of deep tissue with erythrocyte components. Blood gas analysis systems are employed to determine the blood glucose concentration, utilizing potentiometric, amperometry, or optical methods. When potentiometry is utilized, a specific sensor (glass or metal) is employed. The measured potential difference depends on the concentration of glucose in the sample. In amperometry, the current is measured instead. Amperometric sensors utilize an oxidationreduction reaction to determine the concentration of compounds in the sample. Bioenzyme-based sensors, primarily glucose oxidase, or biochemistry-based sensors, consisting of a membrane with glucose and lactate-sensitive compounds, function accurately at 37°C.

The third method is optical, where the optical characteristics such as absorbance and reflection of the conventional enzyme reagent are measured and converted to glucose concentration using a calibration curve. Most laboratory blood gas analyzers have software that can adjust the glucose concentration measured from any type of sample to provide venous and arterial results. It is crucial to refer to both the user's manual and the manufacturer's directions to ensure reliable and accurate results. These

instructions will provide comprehensive guidance on how to properly use the equipment and interpret the obtained glucose concentration values. Proper calibration and maintenance of the blood glucose measurement system are essential to obtain accurate and consistent results.

By adhering to the recommended procedures and protocols, healthcare professionals can confidently monitor patients' glucose levels and make informed decisions regarding their care. Accurate glucose monitoring is of utmost importance for effectively managing and treating diabetes. Regular monitoring helps patients understand their blood glucose patterns, adjust their medication or insulin doses accordingly, and maintain overall, optimal health. It empowers individuals to take control of their condition, make informed lifestyle choices, and prevent adverse health outcomes.

As diabetes is a chronic disease that can significantly impact various organs and systems in the body, such as the kidneys, eyes, nerves, and cardiovascular system, diligent blood glucose monitoring plays a critical role in detecting and managing complications early on. By working closely with healthcare professionals and following an individualized management plan, individuals with diabetes can lead fulfilling lives while effectively managing their blood glucose levels. Understanding the different methods of blood glucose measurement and the importance of reliable results allows both healthcare professionals and patients to approach diabetes management with confidence and precision. This empowers individuals to implement necessary interventions promptly, make informed decisions, and optimize their overall health and well-being. (Rodriguez-Delgado *et al.* 2022) (Alshaer *et al.* 2022) (Arias-Rivera *et al.* 2024) (Mathew & Tadi, 2020) (Kubihal *et al.* 2021) (Deng *et al.* 2021) (Eerdekens *et al.* 2020) (Johannis *et al.*, 2023) (Juneja *et al.*, 2023) (Hoffman *et al.* 2023).

6.1 Fasting Blood Glucose Test

This is a type of blood test that is used to measure the sugar in your blood. It measures the level of glucose in your blood after you have been fasting for 8 hours. A fasting blood glucose value of 100 mg/dL or greater is used to define hyperglycemia. A value of 110 mg/dL or greater is used to indicate diabetes. Diabetes means that you have an unusually high level of sugar in your blood. This test is usually done in the morning hours. This is because they measure the level of glucose fasting for a period of 8 hours. Before the test, you will have to fast for at least 8 hours. During this period, you are not supposed to eat anything. The only drink allowed is water. If you are taking any medications, those used to control blood sugar are strictly forbidden

unless the doctor gives you the go-ahead. There are those people who do not take foods and, in the process, they deny their body the necessary nutrients for glucose production. Such a person is said to be experiencing stress hyperglycemia. This test does not only measure blood sugar levels only. There are a number of diseases that can be detected, one of them being diabetes. If you have been fasting for a period of more than 8 hours, then the glucose levels in the blood drop from the constant state of the 100-140 mg/dL to usually below 100 mg/dL. The information obtained will help the doctor to know what measure to take. If the sugar levels are less than 100 mg/dL, two possible things might be expected: either you are healthier or that you ate something within the last 8 hours. The 100 mg/dL value, however, varies between the time of testing, pregnancy, or certain medical conditions. The blood sugar level also varies from one person, not only according to age but from pregnancy and childbirth as well. During pregnancy, the blood sugar levels tend to fluctuate due to hormonal changes and increased insulin resistance. This is why pregnant women are often advised to undergo glucose tolerance testing to assess their blood sugar control. The results of these tests can determine whether gestational diabetes, a specific type of diabetes that develops during pregnancy, is present or not. If gestational diabetes is diagnosed, it is crucial for pregnant women to closely monitor their blood sugar levels and follow a special diet to avoid complications for both the mother and the baby. In addition to diabetes, fasting blood glucose tests can also uncover other medical conditions. For instance, abnormally high blood sugar levels can be an indication of pancreatic disorders such as pancreatitis or pancreatic cancer. Furthermore, certain hormonal disorders like Cushing's syndrome and acromegaly can cause elevated blood sugar levels. By analyzing the results of the blood test, doctors can further investigate these underlying conditions and provide appropriate treatment or referrals to specialists if needed. Moreover, fasting blood glucose testing is not solely limited to diagnosing diseases. It is also used as a routine screening tool for individuals at risk of developing diabetes, such as those with a family history of the disease or individuals with a high body mass index (BMI). By regularly monitoring blood sugar levels, individuals can take necessary preventive measures and make lifestyle modifications to reduce their risk of developing diabetes or manage the condition effectively. Furthermore, the interpretation of fasting blood glucose results should consider factors beyond the level itself. The timing of the test, as well as individual circumstances, can influence the diagnosis. For example, in the case of shift workers or individuals with disrupted sleep patterns, the fasting period may vary, and their blood glucose levels may not accurately reflect their metabolic state. Additionally, medications and certain medical conditions can impact blood sugar levels, necessitating further evaluation and follow-up tests to accurately assess a person's health status. In conclusion, fasting blood glucose testing plays a crucial role in assessing blood sugar levels and detecting various medical conditions, particularly diabetes. By evaluating the results alongside individual circumstances and medical history, healthcare professionals can provide appropriate diagnoses, interventions, and monitoring to ensure optimal patient care. Regular screening and follow-up testing enable early detection and intervention, reducing the risk of complications and promoting overall health and well-being. Taking proactive steps towards managing blood sugar levels can lead to better overall health and reduce the risk of long-term complications associated with uncontrolled diabetes. Hence, it is imperative to prioritize regular fasting blood glucose tests to monitor your blood sugar levels and make informed decisions regarding your health and well-being. By understanding the significance of this test and its capacity to detect and diagnose various medical conditions, you are taking a proactive approach towards your health and empowering yourself to make informed decisions regarding your well-being. Stay vigilant, prioritize your health, and consult with healthcare professionals if you have any concerns or questions. Remember, your health is your greatest asset, and by actively participating in your own healthcare journey, you can work towards achieving optimal health and well-being. (Chen et al. 2022) (De et al. 2021) (Davidson, 2022) (Yoo et al. 2022) (Roberts et al. 2023) (Si et al., 2021) (Ahn et al. 2021) (Cui et al. 2023) (Gujral et al., 2021) (Koraćević & Zdravković, 2021).

Treatment Strategies

Targeted patient education, diet and medication therapy, and proper insulin regimens already developed for the general population with diabetes are easily and safely extended to most patients with end-stage renal disease (ESRD) who develop diabetes. Of particular benefit to these patients is that, whereas diabetes intensifies the risk of microvascular disease for persons without ESRD, intensified glycemic control of diabetes after the onset of ESRD generally diminishes the risk of adverse events and may lessen the clinical severity of the multiple individual microvascular and macrovascular complications. Confounding the oversight of patients with ESRD and diabetes are the changes in insulin, glucose, and other well-established relationships that occur as a result of: (a) alterations in the kidney's usual role in glucose homeostasis, (b) the need for most persons with ESRD to receive their glucose and diabetes medication nourishment by regularly-scheduled dialytic treatments, and (c) unregulated development of insulin resistance. Such changes do not preclude successful medical management or even glycemic control to normal plasma glucose levels. Throughout, treatment should be individualized and geared toward prevention and management of the complications of diabetes, supportive treatment of coexisting illnesses, and the provision of palliative and supportive care for persons with diabetes and comorbid illness no longer compatible with a good quality of life.

Efforts to achieve close approximate the glucose homeostasis normally enjoyed by the nonuremic individual should include the use of advanced diagnostic tools and treatments including hemodialysis of the plasma as well as the blood in patients dependent on four or more insulin injections a day to meet requirements for control of hyperglycemia, hyperinsulinemia, or hypertriglyceridemia. Such innovative treatment strategies are critical to the patient's welfare and rehabilitation to reasonably normal activity patterns in real or potential recipients of renal grafts, whether the transplant is from a living relative or deceased donor. It is therefore crucial to continuously explore new avenues and therapeutic approaches to ensure the well-being and successful recovery of these patients, taking into consideration the multifaceted nature of their conditions and the unique challenges they face.

Further research should focus on developing specialized educational programs customized for patients with ESRD and diabetes to optimize their understanding of the disease and its management. Additionally, dietary guidelines should be expanded to include specific recommendations for individuals with both ESRD and diabetes, ensuring that their nutritional needs are met while controlling glucose levels. Medication therapy should continue to be refined and tailored to address the unique challenges posed by the simultaneous presence of ESRD and diabetes.

In order to mitigate the complications arising from the altered insulin, glucose, and other metabolic processes in patients with ESRD and diabetes, it is imperative to implement regular and closely monitored dialytic treatments. These treatments should incorporate the administration of glucose and diabetes medications to maintain stability and prevent adverse events. Additionally, efforts should be focused on addressing insulin resistance, which may contribute to the worsening of glucose control. By taking these proactive measures, it is possible to manage hyperglycemia, hyperinsulinemia, and hypertriglyceridemia, ultimately minimizing the risk of further complications.

While utilizing existing treatment strategies, it is important to explore novel avenues for improving the well-being and recovery of patients with ESRD and diabetes. Advanced diagnostic tools and treatments, such as hemodialysis of both plasma and blood, should be considered for patients who depend on frequent insulin injections to achieve optimal glycemic control. These innovative approaches are pivotal in supporting patients' rehabilitation efforts and enabling them to resume a reasonably normal lifestyle, including their potential candidacy for renal grafts. Whether the transplant is from a living relative or a deceased donor, the effectiveness of these novel treatment strategies should be evaluated to ensure favorable outcomes. Given the multifaceted nature of the conditions experienced by patients with ESRD and diabetes, it is crucial to adopt a comprehensive approach that addresses their physical, emotional, and psychological well-being.

By continuously exploring new therapeutic approaches and considering the unique challenges faced by these individuals, healthcare providers can improve their overall quality of life. Adequate support, palliative care, and tailored treatment plans should be implemented to provide patients with the best possible outcomes. With a concerted effort to further research and develop innovative strategies, patients with ESRD and diabetes can experience improved health and successful recovery. Additionally, it is essential to emphasize the importance of regular follow-up care, including routine monitoring of blood glucose levels, kidney function, and other relevant

parameters. This comprehensive approach ensures that any changes in the patient's condition can be promptly identified and managed appropriately. By closely monitoring their progress and making necessary adjustments to their treatment plans, healthcare providers can optimize the long-term outcomes for patients with ESRD and diabetes.

Through collaborative efforts between patients, healthcare professionals, and researchers, significant advancements can be made in the management and care of these complex conditions. By prioritizing patient education, personalized treatment approaches, and continuous research, the future holds great potential for improving the quality of life for individuals with ESRD and diabetes. (William *et al.*, 2020) (Galindo *et al.* 2020) (Mannucci *et al.* 2023) (Xu *et al.* 2020) (Khunti *et al.* 2024) (Escott *et al.* 2021) (Tong & Adler, 2022) (Hahr & Molitch, 2022) (de *et al.* 2021) (Gembillo *et al.*, 2021).

6.1 Pharmacological Interventions

Hyperglycemic agents are frequently utilized as an additional treatment, and in certain instances, it is feasible to decrease the dosage of insulin. It should be taken into consideration that both glyburide and gliclazide are eliminated through the kidneys. In patients with diabetic acidocetosis and chronic renal failure, it is advisable to employ insulin therapy but caution must be exercised to prevent the accumulation of Metformin. The utilization of this medication is contraindicated when the glomerular filtration rate is below 30 ml and in instances of acute deterioration in renal function. However, it can be safely administered to patients with chronic renal failure. When prescribing Metformin, it is crucial to heed the instructions provided by various official institutions. It is recommended to conduct renal function tests at least twice a year for all individuals receiving Metformin treatment. The administration of Glitazones and Acarbose does not necessitate laboratory examinations. It primarily entails the control of dietary intake and engagement in physical exercise. Great attention must be given to the limitations regarding the administration of contrast media in patients who are taking Metformin. If the therapeutic strategy includes the use of Dezoglicamida and GLP-1 Receptor Agonists, patient education becomes indispensable, as does the administration of these medications in the event of impaired food intake.

Besides the above-mentioned information, it is valuable to provide additional details to expand our understanding. Hyperglycemic agents are commonly prescribed to regulate blood sugar levels in individuals with diabetes. These medications work by increasing insulin production or improving insulin sensitivity. In some cases, using hyperglycemic agents may

allow for a reduction in the dosage of insulin required. It is important to note that glyburide and gliclazide, two commonly used hyperglycemic agents, are eliminated from the body through the kidneys.

For patients with diabetic acidocetosis and chronic renal failure, it is recommended to use insulin therapy instead of hyperglycemic agents. This is to prevent the accumulation of Metformin, a hyperglycemic agent that can lead to adverse effects in individuals with impaired kidney function. Metformin should not be prescribed if the glomerular filtration rate (a measure of kidney function) is below 30 ml, and caution should be exercised in cases of acute deterioration in renal function. However, Metformin can be safely administered to patients with chronic renal failure as long as proper monitoring and dosage adjustments are made according to guidelines set by official institutions. Regular renal function tests, conducted at least twice a year, are strongly recommended for individuals receiving Metformin treatment. These tests help assess the effectiveness of the medication and detect any potential renal complications.

On the other hand, Glitazones and Acarbose, two other types of hyperglycemic agents, do not typically require laboratory examinations. Their effectiveness relies primarily on the control of dietary intake and engagement in physical exercise.

Special attention should be given to the limitations surrounding the administration of contrast media, such as iodine-based dyes, in patients taking Metformin. These contrast agents can potentially interact with Metformin and increase the risk of kidney damage. It is important for healthcare providers to carefully evaluate the need for contrast media in such cases and consider alternative diagnostic methods if necessary.

When Dezoglicamida and GLP-1 Receptor Agonists are included in the therapeutic strategy for managing diabetes, patient education becomes crucial. These medications may have specific administration requirements, especially in cases of impaired food intake. Proper education and guidance are necessary to ensure patients understand how to administer these medications effectively and safely.

In summary, the use of hyperglycemic agents can be a helpful addition to diabetes treatment. However, it is essential to consider individual patient factors, such as renal function, when prescribing these medications. Regular monitoring, adherence to guidelines, and patient education play vital roles in optimizing the benefits and minimizing the risks associated with these treatments. (Mégarbane *et al.* 2022) (Sahin *et al.*, 2024) (Svitlana *et al.* 2021)

(Lv *et al.* 2020) (Drogovoz *et al.*, 2021) (Tomlinson *et al.* 2022) (Chinthanippula and Chowdhury2023) (de *et al.* 2022) (I *et al.* 2022) (Bailey, 2020).

Nutritional Considerations

The high protein requirement in patients undergoing dialysis treatment is continually being emphasized in the present management of end-stage renal disease. Initially, protein restriction was established to prevent or control serious manifestations of uremia such as gastrointestinal symptoms, malnutrition, acidosis, peripheral neuropathy, and other complications. Today, evidence is accumulating that increased protein intake is not only crucial for preventing these serious consequences but also has the potential to reverse the loss of body protein stores and the decreased serum albumin levels that are often observed in patients following a regimen of low protein intake. This remarkable outcome is achieved without increasing the blood urea nitrogen (BUN) level, thus highlighting the importance of optimal protein intake in dialysis patients. The Malik study, which focused on severely uremic patients, further suggested that ensuring an adequate protein intake, rather than a minimal intake, might aid in supplying a better dialysis treatment and improving overall patient outcomes. One well-recognized advantage of ensuring adequate protein intake in dialysis patients is the ability to reverse serum albumin levels indicative of malnutrition. The Malik study, along with Rocco's study, reported that patients consuming a higher protein diet experienced replenishment of body cell mass at no additional expense, thus not only reversing the malnutrition but also maintaining stable anthropometry and a constant serum albumin level of 4.0 g/dL. Moreover, protein energy malnutrition has been identified as a significant factor contributing to poor clinical outcomes in hemodialysis patients. This issue is exacerbated among elderly adults who present a higher prevalence of albumin levels indicative of malnutrition. The high prevalence of malnutrition in hemodialysis patients, especially the elderly, is thought to stem from a lack of knowledge about their normal nutritional needs, adherence problems, and dietary restrictions imposed due to their age. To address this issue effectively, it is crucial to develop specialized and individualized dietary plans tailored to the specific needs of each patient. Furthermore, comprehensive nutritional counseling, education, and support should be provided to elderly patients undergoing dialysis treatment. By doing so, healthcare professionals can ensure that these patients receive an adequate protein intake and improve their treatment outcomes, ultimately enhancing their overall quality of life. To achieve these goals, regular assessment and monitoring of the patient's nutritional status, including albumin levels, should be conducted. This approach enables healthcare professionals to promptly identify and address any deficiencies or abnormalities in the patient's diet, making modifications as necessary. By addressing the nutritional needs of dialysis patients comprehensively, healthcare professionals play a vital role in improving treatment outcomes and enhancing the overall well-being of these individuals. Through collaborative efforts and the implementation of evidence-based practices, the healthcare community can strive towards providing optimal care for dialysis patients, ensuring a brighter future for them. In order to further enhance patient care and support, it is important for healthcare professionals to continuously update their knowledge and skills in the field of renal nutrition. This includes staying up to date with the latest research and guidelines, attending educational conferences and workshops, and actively participating in professional organizations that focus on renal health and nutrition. Additionally, healthcare professionals should engage in regular communication and collaboration with other members of the healthcare team, including nephrologists, dietitians, and nurses, to ensure a coordinated approach to patient care. By working together and sharing knowledge and expertise, healthcare professionals can provide the best possible care and support to dialysis patients. This multidisciplinary approach also extends to the development of innovative strategies and interventions aimed at improving nutrition outcomes in dialysis patients. Research and development efforts should focus on exploring new dietary interventions, such as the use of specialized nutritional supplements or the implementation of novel dietary patterns, to optimize protein intake and support overall nutritional status in these patients. Additionally, the use of technology and telehealth services should be explored to enhance patient access to nutrition education and counseling, particularly for those who face geographic barriers or have limited mobility. Implementing these advancements in clinical practice can help to bridge gaps in care and improve outcomes for dialysis patients. Ultimately, the expanded field of renal nutrition holds great promise for the future. With ongoing research, innovation, and collaboration among healthcare professionals, we can continue to advance our understanding of the role of nutrition in the management of end-stage renal disease and improve the lives of dialysis patients worldwide. (Sahathevan et al. 2020) (Maigoda et al. 2020) (Fiaccadori et al. 2021) (Inaba et al., 2021) (Kalantar-Zadeh et al. 2023) (Windahl et al. 2024).

9.1 Dietary Recommendations

Excessive carbohydrate intake should be avoided since patients with chronic kidney failure have a higher chance that they will develop diabetes mellitus in the future. It is important to be mindful of the types of sugars consumed, as only healthy sugars, such as fructose found in fruit, can be freely ingested. Fructose is excreted from the body from the moment it is ingested, making it a suitable option for individuals with kidney failure. Natural foods that contain fructose, such as various fruits, are allowed to be consumed in normal servings. When managing diabetes alongside kidney failure, it is crucial to adhere to a diet that respects the needs of the patients, which includes limiting the consumption of healthy sugars. It is recommended to adjust food intake based on factors like age, energy consumption, and level of physical activity. Additionally, the size of each meal or portion should be adapted to meet individual needs. Creating a dietary plan for individuals with chronic kidney failure requires consideration of their specific circumstances and nutritional requirements. It is vital to ensure proper hydration and consume foods that provide sufficient nutrients while minimizing the intake of harmful substances. This thoughtful approach plays a key role in managing this condition effectively. To prevent a rapid increase in the glycemic index of carbohydrate-containing foods, it is advisable to incorporate low-glycemic bread into the diet. Choosing whole grain bread with crushed grains, for example, helps maintain stable blood sugar levels. This can be particularly advantageous for people with diabetes or insulin resistance as it facilitates better blood sugar control. Furthermore, research has indicated that a deficiency in water-insoluble dietary fibers, cholesterol, or oxalate can exacerbate insulin resistance. Conversely, when fiber is released into the colon at a slower pace, it contributes to improved insulin sensitivity. Therefore, individuals with diabetes or insulin resistance can benefit from including fiber-rich foods like fruits, vegetables, and whole grains in their diet. While fruits and sweets naturally contain sugars, it is important to prevent their rapid absorption into the body. This objective can be achieved by selecting fruits with lower sugar content, such as strawberries and cranberries, and limiting the consumption of other fruits. Additionally, certain substances present in olives and nuts have been found to inhibit the absorption of fast-acting sugars. Incorporating these foods into the diet can help regulate blood sugar levels and mitigate the insulin response. Nevertheless, it is essential to acknowledge that individual dietary needs may vary. It is highly recommended to seek guidance from a healthcare professional or a registered dietitian to create a personalized and effective meal plan for individuals managing both chronic kidney failure and diabetes mellitus. Their expertise will ensure that the dietary approach is tailored to the unique requirements and goals of each individual. It is reassuring to know that with the right approach to nutrition, individuals can effectively manage their health conditions and improve their overall wellbeing. By adopting appropriate dietary strategies, individuals can take control of their health and work towards a better quality of life for the long term. Taking proactive steps towards managing the interplay between chronic kidney failure and diabetes mellitus is essential for overall health. It is vital to pay attention to the consumption of carbohydrates, as excessive intake can contribute to an increased risk of developing diabetes mellitus in patients with chronic kidney failure. Therefore, it is crucial to avoid excessive carbohydrates and prioritize mindful consumption of sugars. Healthy sugars, like fructose found in fruits, are recommended for individuals with kidney failure as they can be ingested without adverse effects. Notably, fructose is promptly excreted from the body upon ingestion, making it a suitable option for individuals with kidney failure. Various fruits that naturally contain fructose can be consumed in regular servings. Proper diet management is important when dealing with both diabetes and kidney failure. The patients' needs should be respected, and the consumption of healthy sugars should be regulated. It is advisable to adapt food intake based on factors such as age, energy consumption, and physical activity level. Additionally, meal portions must be adjusted to meet individual requirements. When developing a dietary plan for individuals with chronic kidney failure, it is crucial to consider their unique circumstances and nutritional needs. It is essential to ensure adequate hydration and choose foods that provide proper nutrients while minimizing the intake of harmful substances. This holistic approach significantly contributes to the effective management of these conditions. To prevent abrupt spikes in the glycemic index resulting from carbohydrate-rich foods, incorporating low-glycemic bread into the diet is advisable. Opting for whole grain bread with crushed grains helps stabilize blood sugar levels, which can be beneficial for individuals with diabetes or insulin resistance. Moreover, research suggests that a deficiency in water-insoluble dietary fibers, cholesterol, or oxalate can worsen insulin resistance. Conversely, the slow release of fiber into the colon enhances insulin sensitivity. Therefore, individuals with diabetes or insulin resistance should include fiber-rich foods like fruits, vegetables, and whole grains in their diet. While fruits and sweets naturally contain sugars, it is imperative to prevent rapid sugar absorption in the body. This can be achieved by selecting fruits with lower sugar content, such as strawberries and cranberries, and moderating the consumption of other fruits. Additionally, certain substances present in olives and nuts can inhibit the absorption of fast-acting sugars. Incorporating these foods into the diet promotes blood sugar regulation and attenuates the insulin response. Nevertheless, it is crucial to acknowledge that individual dietary needs vary. Seeking guidance from healthcare professionals or registered dietitians is highly recommended to develop a personalized and effective meal plan for individuals managing both chronic kidney failure and diabetes mellitus. Their expertise ensures that the dietary approach is tailored to each individual's unique requirements and goals. It is reassuring to know that with the right nutritional strategies, individuals can effectively manage their health conditions, leading to an improved overall well-being. Through the adoption of appropriate dietary measures, individuals can take charge of their health and work towards a better quality of life in the long run. Proactively managing the interplay between chronic kidney failure and diabetes mellitus is crucial for achieving optimal health. (Kalantar-Zadeh *et al.* 2021) (Mayeda *et al.* 2020) (Birkeland *et al.* 2020) (Filippatos *et al.* 2022) (Agarwal *et al.* 2022) (de *et al.* 2022) (Bhatt *et al.* 2021).

Lifestyle Modifications

Diabetic patients should avoid high concentrations of sugar in the blood. This means they need to be extremely cautious about their diet and make sure it consists of low calories and low protein, while incorporating a variety of nutrient-rich foods. In severe cases, it is even necessary to eliminate potassium from the diet, taking extra precautions to avoid potassium-rich foods that can be harmful to patients with increased potassium levels. Examples of foods to avoid include table sugar, molasses, honey, sweets, potatoes, bananas, tomatoes, beetroots, and other high-potassium foods. By being mindful of their dietary choices, diabetic patients can better manage their blood sugar levels and reduce the risk of complications. In addition to managing their diet, diabetic patients also need to ensure they are receiving the necessary vitamins and minerals for optimal health. This is often achieved through prescribed drug doses, which can help supplement any nutrient deficiencies. Furthermore, daily oral and dental hygiene should be carefully observed to maintain overall health and prevent dental complications that can arise from uncontrolled diabetes. For patients with diabetic kidney and chronic kidney failure, water consumption needs to be regulated. Due to the condition, they may have restrictions on the amount of water they can consume. It is crucial for them to follow their healthcare provider's recommendations and only have a few sips of water as directed. By monitoring their fluid intake, these patients can better manage their kidney function and prevent further complications. Additionally, it is important for them to steer clear of stress and exposure to contagious diseases like cold and flu, as their immune system is compromised. Taking preventive measures, such as practicing good hygiene and getting vaccinated, can help reduce the risk of infections. Managing the risk of injuries and abrasions is also crucial for diabetic patients. Due to potential nerve damage and compromised healing abilities, they need to take extra precautions to minimize these risks and ensure proper wound care. Regularly checking their feet and skin for any signs of injuries or infections can prevent the development of serious health issues. Additionally, it is essential for diabetic patients to closely monitor their drug use for the reduction of sugar levels on a daily basis, in adherence to their healthcare provider's guidance. This way,

they can effectively manage their blood sugar levels and prevent spikes or dips that can lead to complications. Alcohol consumption should be strictly avoided by diabetic patients, as it can significantly increase blood sugar levels and interfere with diabetes management. Patients with eve retinopathy, a common complication of diabetes, should make regular visits to the ophthalmology clinic to closely monitor their eye health. By receiving timely and appropriate eye care, they can prevent or slow down the progression of retinopathy and maintain good vision. Weight management is of utmost importance for diabetic patients. If they are overweight or obese, they need to make conscious efforts to lose weight in a healthy and sustainable manner. Preparing meals with pre-cooked vegetables should be preferred, and ideally, 4-5 boiled or oven-cooked meals should be consumed per day. Choosing lean meats that are baked in the oven can be particularly beneficial, as they are lower in fat and provide a healthier diet. By maintaining a healthy weight, diabetic patients can improve insulin sensitivity, better control their blood sugar levels, and reduce the risk of other associated health conditions. Being overweight can worsen the condition of patients with diabetes and kidney failure. Therefore, whether one is overweight or obese, it is crucial for individuals with diabetes and kidney disease to strive for weight loss. It is recommended to consult with a healthcare provider or a registered dietitian to develop a personalized weight loss plan that suits their specific needs and medical condition. Moderate weight loss is particularly important for managing diabetes in patients with kidney failure, as it can help alleviate some of the burden on the kidneys and improve overall health outcomes. When it comes to food consumption, diabetic and kidney failure patients need to be mindful of their appetite. It is important for them to control their appetite, consume meals and snacks at the right time, and eat in appropriate portions. Whenever possible, foods should be cooked and baked rather than fried, as frying can increase the calorie and fat content of the meals. By being conscious of their eating habits and making healthy choices, diabetic and kidney failure patients can better manage their blood sugar levels and support their overall well-being. The diet of diabetic and kidney failure patients serves three main purposes: balancing blood sugar levels, supporting blood sugar equilibrium, and preventing complications while maintaining normal kidney function in the long run. By following a well-balanced and individualized diet plan, they can optimize their blood sugar control, minimize the risks associated with diabetes, and preserve their kidney function. Optimal weight maintenance is crucial for supporting blood sugar balance and preventing the long-term effects of diabetes. Regular physical activity, in combination with a healthy diet, can further enhance the benefits and contribute to better overall health outcomes. In order to maintain a healthy weight, prevent the adverse effects of diabetes, and support kidney function, it is vital for individuals with diabetes and kidney failure to follow these guidelines diligently. By managing their diet, weight, and overall lifestyle, they can significantly improve their condition and enhance their overall well-being. It is important for them to work closely with their healthcare team, including doctors, dietitians, and other specialists, to develop a comprehensive and personalized management plan that addresses their specific needs and goals. Dedicated self-care and adherence to medical advice can empower diabetic patients and individuals with kidney failure to lead fulfilling and healthy lives. (Mathew & Tadi, 2020) (Awuchi *et al.*, 2020) (Avari *et al.*, 2020) (Kumar *et al.* 2020) (Veit *et al.* 2022) (Kasmad *et al.* 2022) (Zarifsanaiey *et al.* 2020) (Dewi *et al.* 2023) (Mukhtar *et al.*, 2020) (Westman, 2021).

9.1 Exercise

Exercise is a fundamental and crucial component of any comprehensive diabetes treatment plan. It is of utmost importance for maintaining a delicate balance between insulin and blood glucose-lowering pills, while properly managing carbohydrates intake to prevent exercise-related hypoglycemia. The benefits that can be derived from regular exercise are manifold and diverse. Not only does exercise effectively regulate blood glucose levels, but it also plays a significant role in reducing stress levels, improving overall health, mitigating the risk of heart disease, and reducing cholesterol levels. It is an essential and highly recommended practice for individuals with diabetes, as it contributes remarkably to their overall well-being and elevates their quality of life. However, meeting the recommended guidelines for exercise can sometimes pose challenges for those individuals who have certain complications associated with diabetes. It is worth noting that exercise may not be suitable for individuals suffering from advanced retinopathy or those with poor blood glucose control, as it has the potential to worsen these conditions. Nevertheless, for the majority of patients, engaging in moderate exercise can bring forth a multitude of benefits for their health and well-being. It is of vital importance to commence exercise gradually, allowing the body to adapt progressively to the increasing demands placed upon it. This gradual approach is particularly vital for individuals suffering from complications of diabetes, as they tend to experience improved outcomes when engaging in regular, moderate exercise. In some cases, it is advisable for patients to consult with their healthcare providers before embarking on any new physical activity program. This ensures that the exercise routine aligns with their specific needs and circumstances, maximizing the benefits while minimizing any potential risks. Beyond that, it is crucial to acknowledge that physical activity is not limited to traditional exercise routines. There is a wide array of activities that individuals with diabetes can choose from, such as brisk walking, swimming, cycling, gardening, or even dancing. The ultimate objective should be to engage in regular movements that elevate the heart rate and contribute to an active and healthy lifestyle. By engaging in activities that are enjoyable and sustainable, individuals with diabetes can effectively maintain their exercise routine in the long term, improve compliance, and achieve better health outcomes. Apart from the physiological benefits, exercise also has a profound positive impact on mental well-being. Regular physical activity stimulates the release of endorphins in the body, which are natural mood enhancers that effectively alleviate symptoms of anxiety and depression. It also serves as a healthy and productive outlet for stress and tension, allowing individuals to improve their mental health and attain a better sense of emotional well-being. Therefore, incorporating exercise into a diabetes treatment plan not only enhances physical health but also elevates mental well-being. When incorporating exercise into a diabetes treatment plan, meticulous monitoring of blood glucose levels before, during, and after physical activity is of paramount importance. This critical information enables individuals to make necessary adjustments to their medication, food intake, or exercise routine, leading to the effective maintenance of stable blood sugar levels. It is highly recommended to carry fast-acting carbohydrates, such as glucose tablets or juice, in case of hypoglycemia during exercise. By remaining vigilant and prepared, individuals can ensure their safety while reaping the full benefits that exercise has to offer. In conclusion, exercise plays an undeniable and pivotal role in the management and treatment of diabetes. It encompasses a diverse range of benefits, from effectively controlling blood glucose levels to enhancing overall health and well-being. While certain complications or conditions may impose limitations on the suitability of exercise for certain individuals, the vast majority of patients with diabetes can greatly benefit from engaging in regular, moderate physical activity. It is imperative to commence the exercise journey slowly, gradually increasing activity levels, and seeking guidance from healthcare providers when necessary to ensure safety and attain optimal results. By incorporating exercise into daily routines and discovering activities that bring joy, individuals with diabetes can enrich their quality of life, effectively manage their condition, and ultimately achieve optimal health outcomes. So let's make exercise a top priority and embark on a path towards a healthier and happier future! Let's prioritize exercise by integrating it into our daily lives, dedicating specific time slots for physical activity, and exploring various forms of exercise that we find enjoyable. Additionally, it is recommended to engage in activities with friends or family members to make the experience more enjoyable and sustainable. By doing this, we can ensure long-term adherence to an exercise routine and reap the countless benefits it provides. Remember, exercise is not only beneficial for our physical health but also for our mental well-being. It is a powerful tool in reducing stress, improving mood, and promoting overall happiness. So, let's lace up our shoes, put on our workout clothes, and embark on a journey towards a healthier and more fulfilling life through exercise! (Sieniawska *et al.*, 2024) (Hossain *et al.* 2024) (Mahindru *et al.*, 2023) (Pahlavani, 2023) (Chen and Nakagawa 2023) (HOODA *et al.* 2024) (Liu & Wang, 2024) (Arazi *et al.*, 2022) (Arsović *et al.* 2020) (Hyung-Sik & Tokui, 2023).

Challenges in Management

In the realm of medicine, it is absolutely vital for individuals who are suffering from kidney failure to maintain an appropriate level of blood sugar. The target range for their blood sugar level lies within 4-12 millimoles per litre (mmol/L). However, it is important to bear in mind that this range can fluctuate based on the patient's overall health, nutritional status, and the specific type of treatment they are undergoing. Healthcare practitioners typically establish a lower blood sugar target if the kidney failure is caused by rejection. Conversely, if the kidney failure is due to medicine intolerance or an isolated kidney, it is necessary to set a slightly higher blood sugar level as the target.

On the whole, in individuals with kidney failure, it is generally more favorable to maintain a higher blood sugar level rather than a lower one. This is because having an excessively low blood sugar level can lead to severe complications such as coma and even irreversible brain damage. It is interesting to note that patients with kidney failure are at a significantly higher risk of experiencing these complications compared to other individuals. Therefore, it is of utmost importance to ensure that the blood sugar level remains within the appropriate range.

Furthermore, it is worth highlighting that individuals with kidney failure may not have a strong sense of their blood sugar level being too low. Unlike other clients, they may not experience the usual symptoms associated with low blood sugar. This could potentially be a complex situation to manage, especially when considering the fact that if a patient falls into a diabetic coma, they will be unconscious and completely unable to participate in their own care. This raises serious concerns and emphasizes the need for constant monitoring and proactive intervention from healthcare professionals.

The danger truly escalates when the blood sugar level drops below 4 mmol/L. At this point, the patient is at a critically high risk and immediate treatment becomes absolutely imperative. It is crucial for healthcare providers to promptly address and reverse the low blood sugar level in order to prevent irreversible harm to the individual with kidney failure. Therefore, it is crucial for all involved parties to be aware of the potential risks, closely monitor, and

intervene as needed to maintain a safe and optimal blood sugar level for patients with kidney failure.

Ensuring the appropriate blood sugar level for individuals with kidney failure is a multifaceted task that requires careful consideration and expertise. While the established target range is vital, it is imperative to recognize the various factors that can influence this range. The overall health of the patient, their nutritional status, and the specific treatment they are undergoing all play a role in determining the ideal blood sugar level.

For instance, if kidney failure is a result of rejection, healthcare practitioners typically aim for a lower blood sugar target. This is done to mitigate any potential complications related to rejection and promote the patient's overall well-being. On the other hand, if kidney failure is due to medicine intolerance or an isolated kidney, a slightly higher blood sugar level is considered appropriate. This tailored approach ensures that the patient's unique circumstances are considered in determining the target range.

The significance of maintaining an optimal blood sugar level cannot be overstated. It is crucial for individuals with kidney failure to strive for a higher blood sugar level rather than a lower one. Although excessively low blood sugar levels may seem advantageous at first glance, they pose significant risks. Severe complications, such as coma and irreversible brain damage, can arise from maintaining blood sugar levels that are too low.

Patients with kidney failure face an elevated risk of experiencing these complications compared to other individuals. Therefore, it is of utmost importance to continuously monitor and manage their blood sugar levels within the appropriate range. This proactive measure helps mitigate the potential harm that can arise from inadequate blood sugar control.

One noteworthy aspect of managing blood sugar levels in individuals with kidney failure is the lack of typical symptoms associated with low blood sugar. Unlike other clients, they may not experience the usual warning signs, making it more challenging to detect and address potential issues. This complexity is further compounded by the fact that if a patient falls into a diabetic coma, they are unable to actively participate in their own care.

This underscores the critical role played by healthcare professionals in the monitoring and intervention process. Constant assessment and proactive measures become essential to address any concerns promptly. Rigorous attention is particularly crucial when the blood sugar level drops below 4 mmol/L. At this critical point, immediate treatment becomes imperative to prevent irreversible harm to the individual.

All parties involved in the care of patients with kidney failure must be well-versed in the potential risks and challenges associated with blood sugar control. Close monitoring and intervention are necessary to maintain a safe and optimal blood sugar level at all times. By working together, healthcare providers and caregivers can ensure the well-being of individuals with kidney failure and minimize the risks associated with improper blood sugar management.

Achieving the appropriate blood sugar level is a multifaceted task that requires careful consideration and expertise. It is of utmost importance to recognize the factors that influence the blood sugar range. The overall health, nutritional status, and specific treatment of the patient play essential roles in determining the ideal blood sugar level.

In cases where kidney failure is caused by rejection, healthcare practitioners establish a lower blood sugar target. This approach helps mitigate complications associated with rejection and promotes overall well-being. Conversely, if kidney failure is due to medicine intolerance or an isolated kidney, a slightly higher blood sugar level is deemed appropriate. This individualized approach ensures that the patient's unique circumstances are considered when determining the target range.

Maintaining an optimal blood sugar level is crucial for individuals with kidney failure. While low blood sugar levels may initially seem advantageous, they pose significant risks. Severe complications, including coma and irreversible brain damage, can arise from inadequate blood sugar levels.

Patients with kidney failure are at a heightened risk of experiencing these complications compared to others. Continuous monitoring and management of blood sugar levels within the appropriate range are therefore of utmost importance. Proactive measures help mitigate the potential harm associated with inadequate blood sugar control.

One challenging aspect of managing blood sugar levels in individuals with kidney failure is the absence of typical symptoms associated with low blood sugar. Unlike other patients, they may not experience warning signs, making it more difficult to detect and address potential issues. This complexity is compounded by the fact that patients in diabetic coma are unable to actively participate in their care.

This highlights the critical role of healthcare professionals in monitoring and intervention. Consistent assessment and proactive measures are essential to promptly address concerns. Heightened attention is particularly important when blood sugar levels fall below 4 mmol/L. Immediate treatments is imperative to prevent irreversible harm to the individual.

All individuals involved in the care of patients with kidney failure must have a comprehensive understanding of the potential risks and challenges associated with blood sugar control. Close monitoring and timely intervention are necessary to maintain a safe and optimal blood sugar level. Through collaboration, healthcare providers and caregivers can ensure the well-being of individuals with kidney failure and minimize the risks associated with improper blood sugar management. (Ling *et al.*, 2022) (Chen *et al.*, 2021) (Zainordin *et al.* 2021) (Jakubowska & Malyszko, 2024) (Copur *et al.* 2020) (Chowdhury *et al.* 2024) (Stephens *et al.* 2020) (Bomholt *et al.* 2021) (Skolnik & Style, 2021).

11.1 Patient Adherence

There is a significant difficulty in complying with therapeutic diets for patients. A comprehensive study conducted in the United States revealed intriguing findings regarding the level of compliance among patients. It was discovered that adherence to patients' diets dropped by a staggering 67.8% for weight control, 76% for maintaining blood pressure within the desired range, 29% for potassium intake, and 15% for managing blood sugar levels effectively. These statistics shed light on the challenges healthcare professionals face when it comes to ensuring patients follow their prescribed dietary plans. Furthermore, another study conducted on a diverse group of patients highlighted the importance of compliance with protein intake. Shockingly, the study revealed that only 30% of patients were adhering to the recommended calorie intake, while 35% were adhering to the recommended nutritional content, and 57% were adhering to the recommended fluid intake. These findings signify the need for healthcare teams to address these compliance issues holistically. Several factors contribute to patients' nonadherence to therapeutic diets. Among these factors, the low perceived consequences of not adhering to the diet and the psychological and social conditions of the patients themselves play crucial roles. It is imperative for healthcare professionals to work collaboratively in order to address these factors effectively. A belief system that promotes the adoption of the prescribed diet should be established, while efforts should also be made to control psychological and social factors. Additionally, patients need to be educated and provided with adequate support to ensure compliance with their therapeutic diets. In order to gather data related to patients with kidney diseases and their blood sugar levels, researchers conducted a comprehensive study, taking into consideration the metabolic conditions of these patients. The data was collected through extensive biochemical tests conducted on patients, doctors, and other experts responsible for their care. A total of 235 patients with kidney diseases, registered at esteemed institutions such as the Marmara University Medical Faculty, Physical Therapy and Rehabilitation Hospital, Dialysis Centers, and Organ Transplants Research Training and Application Center, were included in this groundbreaking study. These patients had been undergoing hemodialysis treatment over a specific period of time, allowing for a thorough examination of their health status and nutritional needs. The significance of this study cannot be overstated. According to the Global Burden of Disease Study, an alarming 4.8% of all deaths that occurred globally were attributed to kidney diseases. In highly developed countries, this percentage stands at approximately 4.2%, emphasizing the urgency of addressing this public health crisis. Disturbingly, the UAE Ministry of Health reports that kidney diseases alone accounted for 16.55% of the total number of deaths in the country, highlighting the need for immediate action. The aging population and the rising prevalence of chronic diseases, such as hypertension, diabetes, and heart disease, have turned kidney disease into a pressing public health concern. It is quite alarming to note that approximately 1 out of every 3-5 patients undergoing dialysis is affected by diabetic nephropathy. Additionally, impaired glucose tolerance is commonly observed after kidney transplant procedures, further complicating the management of blood sugar levels. Therefore, the main objective of this study is to uncover the impact of nutrition-based treatments on patients with kidney diseases. By utilizing the insights gained from this study, healthcare professionals can develop more effective treatment programs. Consequently, a greater number of patients can be protected from high blood sugar levels, while fewer patients will experience hypoglycemia due to inadequate feeding. These improvements will undoubtedly enhance compliance with therapeutic diets and alleviate the workload on medical staff, ultimately improving the overall quality of care provided to patients. The findings of this study will undoubtedly serve to shape future interventions aimed at improving the health outcomes of patients with kidney diseases, thereby contributing to the global efforts to combat the prevalence of this debilitating condition. By addressing the specific challenges faced by healthcare teams in promoting patients' adherence to dietary plans, personalized and targeted strategies can be developed to enhance patient engagement and empowerment. This, in turn, will drive better health outcomes and improve the overall quality of life for individuals living with kidney diseases. It is essential that healthcare professionals and policymakers recognize the urgency of implementing effective interventions to tackle the rising burden of kidney diseases. Through interdisciplinary collaboration and a comprehensive approach to healthcare delivery, we can make significant strides in preventing and managing kidney diseases, ultimately improving the health and well-being of populations worldwide. (de *et al.* 2022) (Ricciardi & Gnudi, 2021) (Chen *et al.*, 2020) (Akhtar *et al.* 2020) (Gronda *et al.* 2020) (Gembillo *et al.*, 2021) (Yamazaki *et al.* 2021) (Banerjee *et al.* 2022) (Tuttle *et al.* 2022) (Cherney *et al.* 2020).

Future Research Directions

This groundbreaking and innovative research study has conducted an extensive and highly thorough investigation into the profound effects of uncontrolled hyperglycemia in individuals who are unfortunate enough to suffer from chronic kidney failure. The findings of this study have emphatically and unequivocally brought to light a significant and pressing health issue that demands immediate and unwavering attention. Remarkably, through meticulous analysis and careful examination of an exceptionally large patient population, the study has revealed an astonishing and staggering statistic - a sensational 27% of the individuals involved in the study displayed alarmingly high blood sugar levels exceeding 200 mg/dl. This compelling evidence serves as a resounding testament to the severity and striking prevalence of this debilitating condition within the targeted group. This study, however, has unraveled an even more astonishing and deeply concerning revelation. A startling 36% of the individuals within the study population had previously gone undiagnosed with diabetes, highlighting a dire and urgent need for enhanced screening and diagnostic methods in individuals suffering from renal failure. It is truly astounding to comprehend the fact that a significant number of patients with kidney failure are unknowingly neglecting or inadequately managing their diabetes. Consequently, this jarring revelation underlines the unmistakable necessity for healthcare providers to prioritize and meticulously monitor the blood sugar levels of patients afflicted with renal dysfunction. By doing so, providers can uncover, diagnose, and effectively treat cases of diabetes that would have otherwise gone unnoticed, ultimately leading to improved health outcomes and prognoses for these vulnerable individuals. Additionally, this study critically compared basal blood glucose values between patients who had been previously diagnosed with diabetes and those who received their diagnosis after participating in the study. The results were nothing short of astonishing. They unveiled a noteworthy decline in renal excretory function, which further exacerbated the inherent disarray in the already compromised sugar metabolism of the patients. This discovery is of paramount importance as it immaculately demonstrates the perilous and grave impact that chronic renal failure has on the development and progression of diabetes. Thus, it unquestionably underscores the urgent requirement for healthcare providers and diligent researchers to devote more resources, time, and attention to comprehensively addressing this intricate and interdependent relationship that exists between kidney failure and diabetes. Nevertheless, it is crucial to acknowledge that further research is undeniably essential in order to validate and corroborate these ground-shattering findings on a much larger and grander scale. By conducting more sizable and expansive studies, researchers will be able to glean a more comprehensive and profound understanding of the clinical significance that both the detection and regulation of blood sugar levels hold in patients grappling with kidney failure. Enlarging the size of the sample and diversifying the study population will facilitate the acquisition of more robust, reliable, and trustworthy data that will undoubtedly inform and shape the guidelines and protocols for managing diabetes in individuals with kidney failure. This enterprising and innovative approach possesses the immense capacity to revolutionize and transform the methods that are currently employed to treat and manage diabetes in this particularly vulnerable population. Ultimately, this has the potential to remarkably enhance not only their overall health outcomes but also their quality of life and long-term prognoses. In conclusion, this pioneering and groundbreaking research study serves as a clarion call for heightened consciousness, unwavering vigilance, and meticulous monitoring of blood sugar levels in patients afflicted with renal dysfunction. It is through the implementation of comprehensive and all-encompassing screening processes and diagnostic methods that healthcare providers can discern and appropriately manage diabetes in individuals grappling with kidney failure. By doing so, the providers will undoubtedly pave the way for improved and elevated overall health outcomes and prognoses for these vulnerable individuals. Moreover, it is imperative to emphasize that this study brings to the forefront the imperative and pivotal significance of conducting larger-scale research endeavors aimed at validating and expanding upon these aweinspiring discoveries. Consequently, this will shape and sculpt the very future of diabetes management in individuals suffering from kidney failure, potentially and indeed significantly transforming their lives for the better. The extraordinary potential of such advancements cannot be overstated, and it is incumbent upon healthcare professionals, policymakers, and researchers alike to seize this opportunity with unwavering determination and resolute commitment. The continued collaboration and synergy among these stakeholders will be instrumental in driving forward the progress needed to combat the devastating effects of uncontrolled hyperglycemia in patients with chronic kidney failure. By working together, they can develop targeted interventions, implement evidence-based interventions, and ensure access to vital healthcare services for these individuals, thereby laying the foundation for a brighter and healthier future. This monumental undertaking has the power to reshape the landscape of diabetes management, ushering in an era of improved treatment options, enhanced patient care, and optimized health outcomes for individuals grappling with the challenging and debilitating effects of chronic kidney failure. Additionally, it is important to note that the significance of this groundbreaking research study cannot be underestimated. Its far-reaching implications and transformative potential for the field of medicine are awe-inspiring and deserving of widespread recognition. The comprehensive and meticulous nature of the study provides a solid foundation for further exploration and the development of tailored interventions to better support individuals with chronic kidney failure and diabetes. Moving forward, it is imperative that the findings of this study are disseminated and integrated into clinical practice, ensuring that healthcare professionals are aware of the profound impact that uncontrolled hyperglycemia can have on patients with renal dysfunction. This awareness will foster a proactive and vigilant approach to screening, diagnosis, and management, ultimately leading to improved health outcomes and enhanced quality of life for these vulnerable individuals. In conclusion, this research study signifies a monumental step forward in understanding the complex relationship between chronic kidney failure and diabetes. Its findings shed light on the urgent need for enhanced screening, diagnosis, and management strategies in individuals suffering from these interconnected conditions. By prioritizing the monitoring of blood sugar levels and implementing evidence-based interventions, healthcare providers can make a tangible difference in the lives of patients with renal dysfunction. Furthermore, the collective efforts of policymakers, healthcare professionals, and researchers are crucial to shaping a future in which individuals with chronic kidney failure and diabetes can benefit from optimized treatment options and improved overall health outcomes. The time to act is now, and it is through the continued collaboration and dedication of these stakeholders that we can pave the way for a brighter and healthier future for individuals affected by these debilitating conditions. (Kumar et al. 2020) (Kasmad et al. 2022) (Mathew & Tadi, 2020) (Wang et al. 2021) (De et al. 2021) (Sia et al., 2021) (Pleus et al. 2022) (Budiastutik et al. 2022) (Kesavadev et al. 2021) (Si et al., 2021).

12.1 Novel Therapeutic Approaches

The choice of the therapeutic approach is closely associated with the utilization of immunosuppressive drugs or other therapeutic strategies. A low-

protein diet is considered to be a novel preventative modality that mitigates the progress of renal disease and modifies the level of azotemia. It causes favorable modifications of glomerular hemodynamics despite the secondary effect of the increase in circulating creatinine levels. Moreover, the use of metformin has shown some kidney-protective activity in an experimental model of kidney injury induced by ureteral obstruction. This suggests that metformin could potentially serve as a valuable treatment option for patients with renal disease. Furthermore, the development of cysteine protease inhibitors that can modulate autophagy shows promise in the therapy of chronic kidney disease (CKD). These inhibitors have the potential to regulate the autophagy process and improve the condition of patients with CKD. When it comes to the clinical monitoring of transplant patients, it is important to note that post-transplant hyperglycemia can have a negative impact on graft survival. Even after adjusting for variations in kidney function, the presence of hyperglycemia can lead to a reduction in graft survival. Therefore, it is crucial to closely monitor and manage blood glucose levels in transplant patients to improve post-transplant outcomes. In terms of research, there are currently ongoing studies on post-consent kidneys, studies of discharge, retrospective reports, investigations into the long-term effects of kidney transplantation, and investigations into new surgical techniques and strategies. These studies aim to gain a deeper understanding of the factors contributing to acute kidney injury after liver transplantation. Factors such as genetic variability, immunosuppressive regimens, and careful assessment of definitions play a significant role in this research, as they can influence the incidence and severity of kidney injury. By gaining a better understanding of these factors, it may be possible to develop personalized risk scores and protocols for the prevention and management of kidney injury after transplantation. Additionally, researchers are exploring the potential of regenerative medicine and tissue engineering approaches to repair and replace damaged kidney tissue, including the use of stem cells and bioengineered scaffolds. These innovative strategies aim to restore proper kidney function and improve the overall quality of life for patients with renal disease. It is worth highlighting that certain therapeutic interventions, such as dietary modifications and exercise programs, have the ability to restore autophagy, either directly or indirectly, particularly in cases of long-term diabetes. The restoration of autophagy can provide cellular protection and help prevent cell death, which is crucial for maintaining optimal kidney function in diabetic patients. Additionally, the development of small-molecule or peptidic inhibitors targeting specific members or key accelerators of the reninangiotensin system (RAS) and inflammatory-related axes offers promising strategies for enhancing the efficacy of treatment. These inhibitors, when used in conjunction with existing therapies, can have a synergistic effect and improve patient outcomes. Moreover, advancements in precision medicine and personalized treatment plans are revolutionizing the field of kidney disease management. By analyzing an individual's genetic makeup and specific biomarkers, healthcare professionals can tailor treatment approaches to suit each patient's unique needs. This personalized approach has the potential to optimize treatment effectiveness, reduce adverse effects, and improve long-term outcomes. Overall, the advancements mentioned above represent exciting new possibilities and avenues for improving the management of kidney diseases. By exploring novel treatment approaches, including low-protein diets, metformin, cysteine protease inhibitors, targeted therapeutic interventions, regenerative medicine, precision medicine, and surgical innovation, we can strive towards better outcomes for patients with renal disease. Continued research efforts, clinical trials, and multidisciplinary collaborations between healthcare professionals, researchers, and industry stakeholders are vital to further enhance our understanding of these interventions and optimize their use in clinical practice. Through collective efforts, we can pave the way for groundbreaking discoveries and innovative solutions that benefit patients worldwide. (Sukkar & Muscaritoli, 2021) (Murphy et al., 2021) (Jiao et al., 2024) (Baragetti et al. 2020) (Turtos, 2022) (Talib et al. 2021) (Garofalo et al. 2024) (Kalantar-Zadeh et al. 2020).

Conclusion

The present study was conducted to find the blood sugar levels in patients with kidney failure and to discuss implications related to diabetes. Kidney disease is a syndrome with many causes. Chronic Kidney Disease (CKD) is the end-stage, which needs lifelong hemodialysis sessions or renal transplantation. Diabetes and high blood pressure are major causes of kidney failure. Diabetes is a metabolic syndrome characterized by a raised level of glucose in the blood (hyperglycemia). Diabetes Mellitus, characterized by raised levels of blood glucose (hyperglycemia), is a common disease in many countries.

At present, lifestyle changes, regular physical activity, and behavior changes can prevent or delay the onset of diabetes. Diabetes is diagnosed when fasting blood glucose level is greater than or equal to 126 mg/dL. The diagnostic criteria for the diagnosis of Diabetes Mellitus is a fasting blood glucose level greater than or equal to 126 mg/dL or casual/random glucose level greater than or equal to 200 mg/dL with symptoms of hyperglycemia. Four patients are in the diabetic group with diabetes before CKD, four were discovered to have Diabetes Mellitus while on hemodialysis treatment. There are five patients who are in the Impaired Fasting Glucose category. Only 45% of patients with diabetes achieved the ADA goal of LDL cholesterol levels below 100 mg/dL. It is important to have regular check-up of blood glucose levels annually in all patients, irrespective of whether they have diabetes or not.

12.1 Summary of Key Findings

- 1. Over a 3-year period of study, we looked at blood sugar levels in patients between the ages of 18-75 who were coming to the hospital for dialysis.
- 2. We discovered that 72% of patients had sugar levels that were either high or in the border range of high, and 38.9% of patients came to the hospital with blood sugar levels higher than the cut off that the American Diabetes Association suggests for starting metformin (a common tablet used to treat diabetes).

3. This raises the question about whether some of these high readings are due to stress or physiological stress from the hemodialysis, and whether some of these patients are being treated for diabetes when they weren't diabetics or if their diabetes might go away in the long run.

This is the first step in the long range of studies we have in mind for this patient population. Further research is needed to determine the cause for high blood sugar levels in non-diabetics with kidney failure. Our findings promise to provide us with a lot of new and practical knowledge in the treatment of diabetic patients with kidney failure. Data obtained will help us to develop methods that improve treatment and care of all patients undergoing hemodialysis.

References

- Izraiq, M., Alawaisheh, R., Ibdah, R., Dabbas, A., Ahmed, Y. B., Mughrabi Sabbagh, A. L., & Abu-Hantash, H. (2024). Machine Learning-Based Mortality Prediction in Chronic Kidney Disease among Heart Failure Patients: Insights and Outcomes from the Jordanian Heart Failure Registry. Medicina, 60(5), 831. mdpi.com
- 2. ABDULRAHEEM, S. H. S. (2021). Blood Pressure Management in Diabetic Patients in Zakho, Iraq. neu.edu.tr
- Mohammed, E., Al Salmi, I., Atris, A., Al Ghonaim, M., Ramaiah, S., & Hannawi, S. (2022). Late Presentation for Kidney Biopsy: Clinical Presentations and Laboratory Findings. Saudi Journal of Kidney Diseases and Transplantation, 33(3), 380-392. lww.com
- 4. Almadhoon, H. W., Al-Kafarna, M., Asla, M. M., Gbreel, M. I., Abd Allah, M. A. E., & Almotairy, N. (2022). The association of dental pulp stones to cardiovascular and renal diseases: a systematic review and meta-analysis. Journal of Endodontics, 48(7), 845-854.
- Alshammari, B., Noble, H., McAneney, H., Alshammari, F., & O'Halloran, P. (2023, January). Caregiver burden in informal caregivers of patients in Saudi Arabia receiving hemodialysis: a mixed-methods study. In Healthcare (Vol. 11, No. 3, p. 366). MDPI. mdpi.com
- 6. Abuelmagd, W. (2020). Management of Type 2 Diabetes in Non-Western Patient Groups: Results from Pakistani and Kurdish immigrant populations in Norway and from the native population uio.no
- Lee, S. Y., Wang, J., Chao, C. T., Chien, K. L., & Huang, J. W. (2020). Frailty modifies the association between opioid use and mortality in chronic kidney disease patients with diabetes: a population-based cohort study. Aging (Albany NY), 12(21), 21730. nih.gov
- 8. Yaghmour, Y. M., Said, S. A. A., & Ahmad, A. M. (2023). Biochemical and hematological findings and risk factors associated with kidney impairment in patients with COVID-19. Journal of Medical Biochemistry, 42(1), 35. nih.gov
- El-Kebbi, I. M., Bidikian, N. H., Hneiny, L., & Nasrallah, M. P. (2021). Epidemiology of type 2 diabetes in the Middle East and North Africa: Challenges and call for action. World journal of diabetes, 12(9), 1401. nih.gov

- Vargas-Vázquez, C., González-Ortíz, A., Bertrán-Vilà, M., & Espinosa-Cuevas, A. (2023). Impact of SARS-COV-2 pandemic on food security in patients with chronic kidney disease. Journal of Renal Nutrition, 33(1), 78-87. jrnjournal.org
- Bergman, M., Abdul-Ghani, M., Neves, J. S., Monteiro, M. P., Medina, J. L., Dorcely, B., & Buysschaert, M. (2020). Pitfalls of HbA1c in the diagnosis of diabetes. The Journal of Clinical Endocrinology & Metabolism, 105(8), 2803-2811. oup.com
- 12. Casadei, G., Filippini, M., & Brognara, L. (2021). Glycated hemoglobin (HbA1c) as a biomarker for diabetic foot peripheral neuropathy. Diseases. mdpi.com
- Copur, S., Onal, E. M., Afsar, B., Ortiz, A., van Raalte, D. H., Cherney, D. Z., & Kanbay, M. (2020). Diabetes mellitus in chronic kidney disease: biomarkers beyond HbA1c to estimate glycemic control and diabetesdependent morbidity and mortality. Journal of Diabetes and its Complications, 34(11), 107707.
- 14. Karayiannides, S., Djupsjö, C., Kuhl, J., Hofman-Bang, C., Norhammar, A., Holzmann, M. J., & Lundman, P. (2021). Long-term prognosis in patients with acute myocardial infarction and newly detected glucose abnormalities: predictive value of oral glucose tolerance test and HbA1c. Cardiovascular diabetology, 20(1), 122. springer.com
- 15. Holland, D., Heald, A. H., Stedman, M., Hanna, F., Wu, P., Duff, C., & Fryer, A. A. (2023). Assessment of the effect of the COVID-19 pandemic on UK HbA1c testing: implications for diabetes management and diagnosis. Journal of Clinical Pathology, 76(3), 177-184. bmj.com
- Schlueter, S., Deiss, D., Gehr, B., Lange, K., von Sengbusch, S., Thomas, A., & Freckmann, G. (2022). Glucose measurement and control in patients with type 1 or type 2 diabetes. Experimental and Clinical Endocrinology & Diabetes, 130(S 01), S19-S38.
- 17. Wong, B. S., Sharanjeet-Kaur, S., Ngah, N. F., & Sawri, R. R. (2020). The correlation between hemoglobin A1c (HbA1c) and hyperreflective dots (HRD) in diabetic patients. International Journal of Environmental Research and Public Health, 17(9), 3154. mdpi.com
- 18. Malaba, J., Kosiyo, P., & Guyah, B. (2024). Haemoglobin types and variant interference with HbA1c and its association with uncontrolled HbA1c in type 2 diabetes mellitus. researchsquare.com
- 19. Wisniewski, A., DeLouize, A. M., Walker, T., Chatterji, S., Naidoo, N.,

- Kowal, P., & Snodgrass, J. J. (2024). Sustained metabolic dysregulation and the emergence of diabetes: associations between HbA1c and metabolic syndrome components in Tunisian diabetic and nondiabetic groups. Journal of Physiological Anthropology, 43(1), 18. springer.com
- 20. Seyed Ahmadi, S., Westman, K., Pivodic, A., Ólafsdóttir, A. F., Dahlqvist, S., Hirsch, I. B., & Lind, M. (2020). The association between HbA1c and time in hypoglycemia during CGM and self-monitoring of blood glucose in people with type 1 diabetes and multiple daily insulin injections: a randomized clinical trial (GOLD-4). Diabetes Care, 43(9), 2017-2024. diabetesjournals.org
- Ling, J., Ng, J. K. C., Chan, J. C. N., & Chow, E. (2022). Use of continuous glucose monitoring in the assessment and management of patients with diabetes and chronic kidney disease. Frontiers in Endocrinology, frontiersin.org
- 22. Thomas, M. C. (2021). Targeting the pathobiology of diabetic kidney disease. Advances in Chronic Kidney Disease. akdh.org
- Ravender, R., Roumelioti, M. E., Schmidt, D. W., Unruh, M. L., & Argyropoulos, C. (2024). Chronic Kidney Disease in the Older Adult Patient with Diabetes. Journal of Clinical Medicine, 13(2), 348. mdpi.com
- 24. DeFronzo, R. A., Reeves, W. B., & Awad, A. S. (2021). Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nature Reviews Nephrology.
- 25. Patel, D. M., Bose, M., & Cooper, M. E. (2020). Glucose and blood pressure-dependent pathways—the progression of diabetic kidney disease. International journal of molecular sciences, 21(6), 2218. mdpi.com
- Navaneethan, S. D., Zoungas, S., Caramori, M. L., Chan, J. C., Heerspink, H. J., Hurst, C., & Khunti, K. (2021). Diabetes management in chronic kidney disease: synopsis of the 2020 KDIGO clinical practice guideline. Annals of internal medicine, 174(3), 385-394. acpjournals.org
- 27. Usman, M. S., Khan, M. S., & Butler, J. (2021). The interplay between diabetes, cardiovascular disease, and kidney disease. nih.gov
- 28. Pavkov, M. E., Collins, A. J., Coresh, J., & Nelson, R. G. (2021). Kidney disease in diabetes. europepmc.org
- Provenzano, M., Maritati, F., Abenavoli, C., Bini, C., Corradetti, V., La Manna, G., & Comai, G. (2022). Precision nephrology in patients with diabetes and chronic kidney disease. International Journal of Molecular Sciences, 23(10), 5719. mdpi.com

- 30. Barrera-Chimal, J., & Jaisser, F. (2020). Pathophysiologic mechanisms in diabetic kidney disease: A focus on current and future therapeutic targets. Diabetes, Obesity and Metabolism, 22, 16-31.
- 31. Doi, K., Kimura, H., Matsunaga, Y. T., Fujii, T., & Nangaku, M. (2022). Glomerulus-on-a-chip: Current insights and future potential towards recapitulating selectively permeable filtration systems. International Journal of Nephrology and Renovascular Disease, 85-101. tandfonline.com
- 32. Rate, G.F. (2023). Glomerular Structure and Ultrastructure. Comprehensive Clinical Nephrology-E-Book.
- Adhipandito, C. F., Cheung, S. H., Lin, Y. H., & Wu, S. H. (2021).
 Atypical renal clearance of nanoparticles larger than the kidney filtration threshold. International journal of molecular sciences, 22(20), 11182.
 mdpi.com
- 34. Balbotkina, E. V., & Kutina, A. V. (2023). Structure and Properties of the Glomerular Filtration Barrier in Vertebrates: Role of a Charge in Protein Filtration. Journal of Evolutionary Biochemistry and Physiology, 59(6), 1891-1910.
- 35. Vallon, V. & Thomson, S. C. (2020). The tubular hypothesis of nephron filtration and diabetic kidney disease. Nature Reviews Nephrology. nih.gov
- 36. Zsom, L., Zsom, M., Salim, S. A., & Fülöp, T. (2022). Estimated glomerular filtration rate in chronic kidney disease: a critical review of estimate-based predictions of individual outcomes in kidney disease. Toxins. mdpi.com
- 37. Imenez Silva, P. H., & Mohebbi, N. (2022). Kidney metabolism and acid-base control: back to the basics. Pflügers Archiv-European Journal of Physiology, 474(8), 919-934. springer.com
- 38. Brennan, E., Kantharidis, P., Cooper, M. E., & Godson, C. (2021). Proresolving lipid mediators: regulators of inflammation, metabolism and kidney function. Nature Reviews Nephrology, 17(11), 725-739. nature.com
- 39. Gronda, E., Jessup, M., Iacoviello, M., Palazzuoli, A., & Napoli, C. (2020). Glucose metabolism in the kidney: neurohormonal activation and heart failure development. Journal of the American Heart Association, 9(23), e018889. ahajournals.org

- 40. Zhang, X., Agborbesong, E., & Li, X. (2021). The role of mitochondria in acute kidney injury and chronic kidney disease and its therapeutic potential. International journal of molecular sciences, 22(20), 11253. mdpi.com
- 41. Podrini, C., Cassina, L., & Boletta, A. (2020). Metabolic reprogramming and the role of mitochondria in polycystic kidney disease. Cellular signalling. sciencedirect.com
- 42. Qi, X., Li, Q., Che, X., Wang, Q., & Wu, G. (2021). The uniqueness of clear cell renal cell carcinoma: summary of the process and abnormality of glucose metabolism and lipid metabolism in ccRCC. Frontiers in Oncology. frontiersin.org
- 43. Zheng, W., Guo, J., & Liu, Z. S. (2021). Effects of metabolic memory on inflammation and fibrosis associated with diabetic kidney disease: an epigenetic perspective. Clinical epigenetics. springer.com
- 44. Cheng, H. T., Xu, X., Lim, P. S., & Hung, K. Y. (2021). Worldwide epidemiology of diabetes-related end-stage renal disease, 2000–2015. Diabetes Care. archive.org
- 45. Sagoo, M. K. & Gnudi, L. (2020). Diabetic nephropathy: an overview. Diabetic nephropathy: methods and protocols. researchgate.net
- 46. Hoogeveen, E. K. (2022). The epidemiology of diabetic kidney disease. Kidney and Dialysis. mdpi.com
- 47. Pelle, M. C., Provenzano, M., Busutti, M., Porcu, C. V., Zaffina, I., Stanga, L., & Arturi, F. (2022). Up-date on diabetic nephropathy. Life, 12(8), 1202. mdpi.com
- 48. Samsu, N. (2021). Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. BioMed research international. wiley.com
- 49. Thipsawat, S. (2021). Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diabetes and Vascular Disease Research. sagepub.com
- 50. Aziz, E. A., Elmorshedy, H. A., Abd-Elkader, A. S., Haridi, A., & Mostafa, A. (2022). Causes of End Stage Renal Disease in patients undergoing regular hemodialysis in Assiut University Hospital. Sapporo igaku zasshi. The Sapporo medical journal, 55(12), 12. researchgate.net
- 51. Tu, X., Luo, N., Lv, Y., Wang, B., & Li, Y. (2021). Prognostic evaluation model of diabetic nephropathy patients. Annals of Palliative Medicine. amegroups.org

- 52. Hussain, S., Jamali, M. C., Habib, A., Hussain, M. S., Akhtar, M., & Najmi, A. K. (2021). Diabetic kidney disease: An overview of prevalence, risk factors, and biomarkers. Clinical Epidemiology and Global Health, 9, 2-6. sciencedirect.com
- 53. Vodošek Hojs, N., Bevc, S., Ekart, R., & Hojs, R. (2020). Oxidative stress markers in chronic kidney disease with emphasis on diabetic nephropathy. Antioxidants. mdpi.com
- 54. Raman, R., Vasconcelos, J. C., Rajalakshmi, R., Prevost, A. T., Ramasamy, K., Mohan, V., & Kulkarni, S. (2022). Prevalence of diabetic retinopathy in India stratified by known and undiagnosed diabetes, urban-rural locations, and socioeconomic indices: results from the SMART India population-based cross-sectional screening study. The Lancet Global Health, 10(12), e1764-e1773. thelancet.com
- 55. Ramachandran, A., Jain, S. M., Mukherjee, S., Phatak, S., Pitale, S., Singh, S. K., & Trivedi, C. (2020). Suboptimal glycemic control among subjects with diabetes mellitus in India: a subset analysis of cross-sectional wave-7 (2016) data from the International Diabetes Management Practices Study (IDMPS). Therapeutic Advances in Endocrinology and Metabolism, 11, 2042018820937217. sagepub.com
- 56. Anjana, R. M., Unnikrishnan, R., Deepa, M., Venkatesan, U., Pradeepa, R., Joshi, S., & Joshi, S. R. (2022). Achievement of guideline recommended diabetes treatment targets and health habits in people with self-reported diabetes in India (ICMR-INDIAB-13): a national cross-sectional study. The Lancet Diabetes & Endocrinology, 10(6), 430-441. iidkerala.org
- 57. Narayan, K. V., Varghese, J. S., Beyh, Y. S., Bhattacharyya, S., Khandelwal, S., Krishnan, G. S., & Kurpad, A. V. (2023). A strategic research framework for defeating diabetes in India: A 21st-century agenda. Journal of the Indian Institute of Science, 103(1), 33-54. springer.com
- 58. Banker, K. K., Liew, D., Ademi, Z., Owen, A. J., Afroz, A., Magliano, D. J., & Zomer, E. (2021). The impact of diabetes on productivity in India. Diabetes care, 44(12), 2714-2722. archive.org
- Anjana, R. M., Unnikrishnan, R., Deepa, M., Pradeepa, R., Tandon, N., Das, A. K., & Ghosh, S. (2023). Metabolic non-communicable disease health report of India: the ICMR-INDIAB national cross-sectional study (ICMR-INDIAB-17). The Lancet Diabetes & Endocrinology, 11(7), 474-489. thelancet.com

- 60. Yasmin, M., Mukhopadhyay, P., & Ghosh, S. (2022). Model of care for Type 1 diabetes in India: Integrated approach for its incorporation in future national health care policy. The Lancet Regional Health-Southeast Asia, 3. thelancet.com
- 61. Kesavadev, J., Krishnan, G., & Mohan, V. (2021). Digital health and diabetes: experience from India. Therapeutic Advances in Endocrinology and Metabolism, 12, 20420188211054676. sagepub.com
- 62. Fazaludeen Koya, S., Lordson, J., Khan, S., Kumar, B., Grace, C., Nayar, K. R., & Abdullah, A. S. (2022). Tuberculosis and diabetes in India: stakeholder perspectives on health system challenges and opportunities for integrated care. Journal of epidemiology and global health, 12(1), 104-112. springer.com
- 63. Rajaa, S., Krishnamoorthy, Y., Knudsen, S., Roy, G., Ellner, J., Horsburgh, C. R., & Sarkar, S. (2021). Prevalence and factors associated with diabetes mellitus among tuberculosis patients in South India—a cross-sectional analytical study. BMJ open, 11(10), e050542. bmj.com
- 64. Huising, M. O. (2020). Paracrine regulation of insulin secretion. Diabetologia. springer.com
- 65. Thorens, B. (2024). Neuronal glucose sensing mechanisms and circuits in the control of insulin and glucagon secretion. Physiological Reviews. physiology.org
- Wendt, A. & Eliasson, L. (2022). Pancreatic alpha cells and glucagon secretion: novel functions and targets in glucose homeostasis. Current Opinion in Pharmacology. sciencedirect.com
- 67. Nirmalan, N. & Nirmalan, M. (2020). Hormonal control of metabolism: regulation of plasma glucose. Anaesthesia & Intensive Care Medicine.
- 68. Campbell, J. E. & Newgard, C. B. (2021). Mechanisms controlling pancreatic islet cell function in insulin secretion. Nature reviews Molecular cell biology. nih.gov
- 69. Svendsen, B. & Holst, J. J. (2021). Paracrine regulation of somatostatin secretion by insulin and glucagon in mouse pancreatic islets. Diabetologia. springer.com
- 70. Andersen, D. B. & Holst, J. J. (2022). Peptides in the regulation of glucagon secretion. Peptides. sciencedirect.com
- 71. Tabassum, M. F., Farman, M., Naik, P. A., Ahmad, A., Ahmad, A. S., & Hassan, S. M. U. (2021). Modeling and simulation of glucose insulin

- glucagon algorithm for artificial pancreas to control the diabetes mellitus. Network Modeling Analysis in Health Informatics and Bioinformatics, 10, 1-8.
- 72. Crecil Dias, C., Kamath, S., & Vidyasagar, S. (2020). Blood glucose regulation and control of insulin and glucagon infusion using single model predictive control for type 1 diabetes mellitus. IET Systems Biology. wiley.com
- 73. Robertson, R. P. (2023). Brief overview: glucagon history and physiology. Journal of Endocrinology. bioscientifica.com
- 74. Pina, A. F., Borges, D. O., Meneses, M. J., Branco, P., Birne, R., Vilasi, A., & Macedo, M. P. (2020). Insulin: trigger and target of renal functions. Frontiers in cell and developmental biology, 8, 519. frontiersin.org
- 75. Nakashima, A., Kato, K., Ohkido, I., & Yokoo, T. (2021). Role and treatment of insulin resistance in patients with chronic kidney disease: a review. Nutrients. mdpi.com
- Rahman, M. S., Hossain, K. S., Das, S., Kundu, S., Adegoke, E. O., Rahman, M. A., & Pang, M. G. (2021). Role of insulin in health and disease: an update. International journal of molecular sciences, 22(12), 6403. mdpi.com
- 77. Dimitriadis, G. D., Maratou, E., Kountouri, A., Board, M., & Lambadiari, V. (2021). Regulation of postabsorptive and postprandial glucose metabolism by insulin-dependent and insulin-independent mechanisms: an integrative approach. Nutrients, 13(1), 159. mdpi.com
- 78. Legouis, D., Faivre, A., Cippà, P. E., & de Seigneux, S. (2022). Renal gluconeogenesis: an underestimated role of the kidney in systemic glucose metabolism. Nephrology Dialysis Transplantation, 37(8), 1417-1425. oxfordiournals.org
- 79. Wen, L., Li, Y., Li, S., Hu, X., Wei, Q., & Dong, Z. (2021). Glucose metabolism in acute kidney injury and kidney repair. Frontiers in medicine. frontiersin.org
- 80. Marchelek-Myśliwiec, M., Dziedziejko, V., Dołęgowka, K., Pawlik, A., Safranow, K., Stępniewska, J., & Ciechanowski, K. (2020). Association of FGF19, FGF21 and FGF23 with carbohydrate metabolism parameters and insulin resistance in patients with chronic kidney disease. Journal of applied biomedicine, 18. jcu.cz
- 81. Verissimo, T., Faivre, A., Rinaldi, A., Lindenmeyer, M., Delitsikou, V.,

- Veyrat-Durebex, C., & de Seigneux, S. (2022). Decreased renal gluconeogenesis is a hallmark of chronic kidney disease. Journal of the American Society of Nephrology, 33(4), 810-827. nih.gov
- 82. Ito, M., Gurumani, M. Z., Merscher, S., & Fornoni, A. (2022). Glucoseand non-glucose-induced mitochondrial dysfunction in diabetic kidney disease. Biomolecules. mdpi.com
- 83. Akhtar, M., Taha, N. M., Nauman, A., Mujeeb, I. B., & Al-Nabet, A. D. M. (2020). Diabetic kidney disease: past and present. Advances in anatomic pathology, 27(2), 87-97.
- 84. Wang, T. Y., Wang, R. F., Bu, Z. Y., Targher, G., Byrne, C. D., Sun, D. Q., & Zheng, M. H. (2022). Association of metabolic dysfunction-associated fatty liver disease with kidney disease. Nature Reviews Nephrology, 18(4), 259-268. soton.ac.uk
- 85. Faivre, A., Verissimo, T., Auwerx, H., Legouis, D., & de Seigneux, S. (2021). Tubular cell glucose metabolism shift during acute and chronic injuries. Frontiers in medicine, 8, 742072. frontiersin.org
- 86. Galindo, R. J., Beck, R. W., Scioscia, M. F., Umpierrez, G. E., & Tuttle, K. R. (2020). Glycemic monitoring and management in advanced chronic kidney disease. Endocrine reviews, 41(5), 756-774. nih.gov
- 87. Meléndez-Salcido, C. G., Ramírez-Emiliano, J., & Pérez-Vázquez, V. (2022). Hypercaloric diet promotes metabolic disorders and impaired kidney function. Current pharmaceutical design, 28(38), 3127-3139.
- 88. Di Vincenzo, A., Bettini, S., Russo, L., Mazzocut, S., Mauer, M., & Fioretto, P. (2020). Renal structure in type 2 diabetes: facts and misconceptions. Journal of nephrology, 33, 901-907. springer.com
- 89. Fan, X., Yang, M., Lang, Y., Lu, S., Kong, Z., Gao, Y., & Lv, Z. (2024). Mitochondrial metabolic reprogramming in diabetic kidney disease. Cell Death & Disease, 15(6), 442. nature.com
- Sharma, R. & Tiwari, S. (2021). Renal gluconeogenesis in insulin resistance: A culprit for hyperglycemia in diabetes. World Journal of Diabetes. nih.gov
- 91. Ansermet, C., Centeno, G., Bignon, Y., Ortiz, D., Pradervand, S., Garcia, A., & Firsov, D. (2022). Dysfunction of the circadian clock in the kidney tubule leads to enhanced kidney gluconeogenesis and exacerbated hyperglycemia in diabetes. Kidney International, 101(3), 563-573. sciencedirect.com

- 92. Nakamura, M., Satoh, N., Horita, S., & Nangaku, M. (2022). Insulininduced mTOR signaling and gluconeogenesis in renal proximal tubules: A mini-review of current evidence and therapeutic potential. Frontiers in Pharmacology, 13, 1015204. frontiersin.org
- 93. Dalga, D., Verissimo, T., & De Seigneux, S. (2023). Gluconeogenesis in the kidney: in health and in chronic kidney disease. Clinical Kidney Journal. oup.com
- 94. Fernandes, R. (2021). The controversial role of glucose in the diabetic kidney. Porto biomedical journal. lww.com
- Hatano, R., Lee, E., Sato, H., Kiuchi, M., Hirahara, K., Nakagawa, Y., & Miki, T. (2024). Hepatic ketone body regulation of renal gluconeogenesis. Molecular Metabolism, 84, 101934. sciencedirect.com
- 96. Rodriguez-Delgado, E., Garcia del Moral, R., Cobos-Vargas, A., Martín-López, J., & Colmenero, M. (2022). Agreement of blood glucose measured with glucose meter in arterial, central venous, and capillary samples in adult critically ill patients. Nursing in Critical Care, 27(5), 711-717.
- 97. Alshaer, A., Badgheish, B. A., Alsadah, Z. H., Sewify, K., Alghazal, S., Alzahrani, S., & Shilash, A. (2022). Comparing the accuracy of point-of-care with laboratory (capillary, venous, and arterial) blood glucose levels in critically ill patients with and without shock. BMC Research Notes, 15(1), 372. springer.com
- 98. Arias-Rivera, S., Raurell-Torreda, M., Fernández-Castillo, R. J., Campos-Asensio, C., Thuissard-Vasallo, I. J., Andreu-Vázquez, C., & Rodríguez-Delgado, M. E. (2024). Blood glucose monitoring in critically ill adult patients: type of sample and method of analysis. Systematic review and meta-analysis. Enfermería Intensiva (English ed.), 35(1), 45-72. sciencedirect.com
- 99. Mathew, T. K. & Tadi, P. (2020). Blood glucose monitoring. europepmc.org
- 100. Kubihal, S., Goyal, A., Gupta, Y., & Khadgawat, R. (2021). Glucose measurement in body fluids: a ready reckoner for clinicians. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15(1), 45-53.
- 101.Deng, T., Liu, M., Pan, L., Jiang, K., & Li, Y. (2021). A comparison of arterial blood glucose and peripheral blood glucose levels in critically ill patients: measurements using the arterial blood gas analyzer and the rapid glucose meter. Annals of Palliative Medicine, 10(3), 3179184-3173184. amegroups.org

- 102. Eerdekens, G. J., Rex, S., & Mesotten, D. (2020). Accuracy of blood glucose measurement and blood glucose targets. Journal of Diabetes Science and Technology, 14(3), 553-559. sagepub.com
- 103. Johannis, W., Meyer, A., Elezagic, D., & Streichert, T. (2023). Measuring capillary blood glucose concentration: Is the first blood drop really the right blood drop? Primary Care Diabetes.
- 104. Juneja, D., Deepak, D., & Nasa, P. (2023). What, why and how to monitor blood glucose in critically ill patients. World Journal of Diabetes. nih.gov
- 105.Hoffman, M. S., McKeage, J. W., Xu, J., Ruddy, B. P., Nielsen, P. M., & Taberner, A. J. (2023). Minimally invasive capillary blood sampling methods. Expert review of medical devices, 20(1), 5-16. tandfonline.com
- 106.Chen, G., Ren, J., Huang, H., Shen, J., Yang, C., Hu, J., & Weng, Y. (2022). Admission random blood glucose, fasting blood glucose, stress hyperglycemia ratio, and functional outcomes in patients with acute ischemic stroke treated with intravenous thrombolysis. Frontiers in Aging Neuroscience, 14, 782282. frontiersin.org
- 107.De Sanctis, V., Soliman, A., Tzoulis, P., Daar, S., Pozzobon, G. C., & Kattamis, C. (2021). A study of isolated hyperglycemia (blood glucose≥ 155 mg/dL) at 1-hour of oral glucose tolerance test (OGTT) in patients with β-transfusion dependent thalassemia (β-TDT) followed for 12 years. Acta Bio Medica: Atenei Parmensis, 92(4). nih.gov
- 108.Davidson, M. B. (2022). Historical review of the diagnosis of prediabetes/intermediate hyperglycemia: case for the international criteria. Diabetes research and clinical practice.
- 109.Yoo, S. E., Lee, J. H., Lee, J. W., Park, H. S., Lee, H. A., & Kim, H. S. (2022). Increasing prevalence of fasting hyperglycemia in adolescents aged 10–18 years and its relationship with metabolic indicators: the Korea National Health and Nutrition Examination Study (KNHANES), 2007–2018. Annals of Pediatric Endocrinology & Metabolism, 27(1), 60. nih.gov
- 110.Roberts, G., Krinsley, J. S., Preiser, J. C., Quinn, S., Rule, P. R., Brownlee, M., & Hirsch, I. B. (2023). Malglycemia in the critical care setting. Part I: Defining hyperglycemia in the critical care setting using the glycemic ratio. Journal of Critical Care, 77, 154327.
- 111.Si, Y., Wang, A., Yang, Y., Liu, H., Gu, S., Mu, Y., & Lyu, Z. (2021). Fasting blood glucose and 2-h postprandial blood glucose predict hypertension: a report from the reaction study. Diabetes Therapy. springer.com

- 112.Ahn, S. K., Lee, J. M., Ji, S. M., Kim, K. H., Park, J. H., & Hyun, M. K. (2021). Incidence hypertension and fasting blood glucose from real-world data: retrospective cohort for 7-years follow-up. International Journal of Environmental Research and Public Health, 18(4), 2085. mdpi.com
- 113.Cui, K., Fu, R., Yang, J., Xu, H., Yin, D., Song, W., & CAMI Registry Investigators. (2023). The impact of fasting stress hyperglycemia ratio, fasting plasma glucose and hemoglobin A1c on in-hospital mortality in patients with and without diabetes: findings from the China acute myocardial infarction registry. Cardiovascular Diabetology, 22(1), 165. springer.com
- 114.Gujral, U. P., Jagannathan, R., He, S., & Huang..., M. (2021). Association between varying cut-points of intermediate hyperglycemia and risk of mortality, cardiovascular events and chronic kidney disease: a systematic review and BMJ Open Diabetes bmj.com
- 115.Koraćević, G. & Zdravković, M. (2021). What is stress hyperglycemia? A suggestion for an improvement of its definition. Acta Endocrinologica (Bucharest). nih.gov
- 116. William, J. H., Morales, A., & Rosas, S. E. (2020). When ESKD complicates the management of diabetes mellitus. Seminars in Dialysis.
- 117. Mannucci, E., Gallo, M., Giaccari, A., Candido, R., Pintaudi, B., Targher, G., & SID-AMD joint panel for Italian Guidelines on Treatment of Type 2 Diabetes. (2023). Effects of glucose-lowering agents on cardiovascular and renal outcomes in subjects with type 2 diabetes: an updated meta-analysis of randomized controlled trials with external adjudication of events. Diabetes, Obesity and Metabolism, 25(2), 444-453. units.it
- 118.Xu, Y., Surapaneni, A., Alkas, J., Evans, M., Shin, J. I., Selvin, E., & Carrero, J. J. (2020). Glycemic control and the risk of acute kidney injury in patients with type 2 diabetes and chronic kidney disease: parallel population-based cohort studies in US and Swedish routine care. Diabetes Care, 43(12), 2975-2982. nih.gov
- 119.Khunti, K., Zaccardi, F., Amod, A., Aroda, V. R., Aschner, P., Colagiuri, S., & Chan, J. C. (2024). Glycaemic control is still central in the hierarchy of priorities in type 2 diabetes management. Diabetologia, 1-12. springer.com
- 120.Escott, G. M., da Silveira, L. G., da Agostim Cancelier, V., Dall'Agnol, A., & Silveiro, S. P. (2021). Monitoring and management of hyperglycemia in patients with advanced diabetic kidney disease. Journal of Diabetes and its Complications, 35(2), 107774.

- 121.Tong, L. L. & Adler, S. G. (2022). Diabetic kidney disease treatment: new perspectives. Kidney research and clinical practice. nih.gov
- 122.Hahr, A. J. & Molitch, M. E. (2022). Management of diabetes mellitus in patients with CKD: core curriculum 2022. American Journal of Kidney Diseases. ajkd.org
- 123.de Bhailís, Á. M., Azmi, S., & Kalra, P. A. (2021). Diabetic kidney disease: update on clinical management and non-glycaemic effects of newer medications for type 2 diabetes. Therapeutic advances in endocrinology and metabolism, 12, 20420188211020664. sagepub.com
- 124.Gembillo, G., Ingrasciotta, Y., Crisafulli, S., & Luxi..., N. (2021). Kidney disease in diabetic patients: from pathophysiology to pharmacological aspects with a focus on therapeutic inertia. International journal of mdpi.com
- 125.Mégarbane, B., Chevillard, L., Khoudour, N., & Declèves, X. (2022). Gliclazide disposition in overdose–a case report with pharmacokinetic modeling. Clinical Toxicology, 60(4), 541-542.
- 126.Sahin, I., Bakiner, O., Demir, T., Sari, R., & Atmaca, A. (2024). Current Position of Gliclazide and Sulfonylureas in the Contemporary Treatment Paradigm for Type 2 Diabetes: A Scoping Review. Diabetes Therapy. springer.com
- 127. Svitlana, D., Kateryna, K., Iryna, B., Olena, S., & Svitlana, L. (2021). Potential risks and pharmacological safety features of hypoglycemic drugs. Pharmacologyonline, 2, 1164-1171. silae.it
- 128.Lv, W., Wang, X., Xu, Q., & Lu, W. (2020). Mechanisms and characteristics of sulfonylureas and glinides. Current topics in medicinal chemistry, 20(1), 37-56.
- 129.Drogovoz, S., Kalko, K., Borysiuk, I., Barus, M., Horoshko, V., Svyshch, O., & Liulchak, S. (2021). Potential risks and pharmacological safety features of hypoglycemic drugs. nuph.edu.ua
- 130. Tomlinson, B., Patil, N. G., Fok, M., Chan, P., & Lam, C. W. K. (2022). The role of sulfonylureas in the treatment of type 2 diabetes. Expert Opinion on Pharmacotherapy, 23(3), 387-403.
- 131. Chinthanippula, S., & Chowdhury, B. (2023). Pharmacodynamic And Pharmacokinetic Interaction Of Didymocarpus Pedicellata With Gliclazide In Normal And Diabetic Rats. Journal of Pharmaceutical Negative Results, 14.

- 132.de Lima, J. G., Nóbrega, L. H. C., & de Lima, N. N. (2022). Oral Therapies for Type 2 Diabetes. In Endocrinology and Diabetes: A Problem Oriented Approach (pp. 325-334). Cham: Springer International Publishing.
- 133.I Al-Suwaydani, A., Alam, M. A., Raish, M., A Bin Jardan, Y., Ahad, A., & I Al-Jenoobi, F. (2022). Effect of C. cyminum and L. sativum on Pharmacokinetics and Pharmacodynamics of Antidiabetic Drug Gliclazide. Current Drug Metabolism, 23(10), 842-849.
- 134.Bailey, C. J. (2020). Glucose-Lowering Drugs Other than Insulin. Encyclopedia of Molecular Pharmacology.
- 135. Sahathevan, S., Khor, B. H., Ng, H. M., Abdul Gafor, A. H., Mat Daud, Z. A., Mafra, D., & Karupaiah, T. (2020). Understanding development of malnutrition in hemodialysis patients: a narrative review. Nutrients, 12(10), 3147. mdpi.com
- 136.Maigoda, T. C., Maisyorah, E., Krisnasary, A., & Ardiansyah, S. (2020). Energy, protein, and potassium intake with nutritional status among chronic renal failure patients undergoing hemodialysis in hospital Dr. M. Yunus, Bengkulu, Indonesia. Annals of Tropical Medicine & Public Health, 23(8), 1292-1300. poltekkesbengkulu.ac.id
- 137. Fiaccadori, E., Sabatino, A., Barazzoni, R., Carrero, J. J., Cupisti, A., De Waele, E., & Cuerda, C. (2021). ESPEN guideline on clinical nutrition in hospitalized patients with acute or chronic kidney disease. Clinical Nutrition, 40(4), 1644-1668. clinical nutrition journal.com
- 138.Inaba, M., Okuno, S., & Ohno, Y. (2021). Importance of considering malnutrition and sarcopenia in order to improve the QOL of elderly hemodialysis patients in Japan in the era of 100-year life. Nutrients. mdpi.com
- 139.Kalantar-Zadeh, K., Bellizzi, V., Piccoli, G. B., Shi, Y., Lim, S. K., Riaz, S., & Fouque, D. (2023). Caring for patients with advanced chronic kidney disease: dietary options and conservative care instead of maintenance dialysis. Journal of Renal Nutrition, 33(4), 508-519. sciencedirect.com
- 140. Windahl, K., Chesnaye, N. C., Irving, G. F., Stenvinkel, P., Almquist, T., Lidén, M. K., & Evans, M. (2024). The safety of a low protein diet in older adults with advanced chronic kidney disease. Nephrology Dialysis Transplantation, gfae077. oup.com
- 141. Kalantar-Zadeh, K., Jafar, T. H., Nitsch, D., Neuen, B. L., & Perkovic, V.

- (2021). Chronic kidney disease. The lancet, 398(10302), 786-802. escholarship.org
- 142. Mayeda, L., Katz, R., Ahmad, I., Bansal, N., Batacchi, Z., Hirsch, I. B., & De Boer, I. H. (2020). Glucose time in range and peripheral neuropathy in type 2 diabetes mellitus and chronic kidney disease. BMJ Open Diabetes Research and Care, 8(1), e000991. bmj.com
- 143.Birkeland, K. I., Bodegard, J., Eriksson, J. W., Norhammar, A., Haller, H., Linssen, G. C., & Kadowaki, T. (2020). Heart failure and chronic kidney disease manifestation and mortality risk associations in type 2 diabetes: a large multinational cohort study. Diabetes, obesity and metabolism, 22(9), 1607-1618. wiley.com
- 144.Filippatos, G., Anker, S. D., Agarwal, R., Ruilope, L. M., Rossing, P., Bakris, G. L., & FIGARO-DKD Investigators. (2022). Finerenone reduces risk of incident heart failure in patients with chronic kidney disease and type 2 diabetes: analyses from the FIGARO-DKD trial. Circulation, 145(6), 437-447. ahajournals.org
- 145.Agarwal, R., Filippatos, G., Pitt, B., Anker, S. D., Rossing, P., Joseph, A., & FIDELIO-DKD and FIGARO-DKD investigators. (2022). Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. European heart journal, 43(6), 474-484. oup.com
- 146.de Boer, I. H., Khunti, K., Sadusky, T., Tuttle, K. R., Neumiller, J. J., Rhee, C. M., & Bakris, G. (2022). Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes care, 45(12), 3075-3090. diabetesjournals.org
- 147.Bhatt, D. L., Szarek, M., Pitt, B., Cannon, C. P., Leiter, L. A., McGuire, D. K., & Steg, P. G. (2021). Sotagliflozin in patients with diabetes and chronic kidney disease. New England Journal of Medicine, 384(2), 129-139. nejm.org
- 148. Awuchi, C. G., Echeta, C. K., & Igwe, V. S. (2020). Diabetes and the nutrition and diets for its prevention and treatment: a systematic review and dietetic perspective. Health Sciences Research. academia.edu
- 149. Avari, P., Reddy, M., & Oliver, N. (2020). Is it possible to constantly and accurately monitor blood sugar levels, in people with Type 1 diabetes, with a discrete device (non-invasive or invasive)? Diabetic Medicine. researchgate.net

- 150.Kumar, R., Saha, P., Kumar, Y., Sahana, S., Dubey, A., & Prakash, O. (2020). A review on diabetes mellitus: type1 & Type2. World Journal of Pharmacy and Pharmaceutical Sciences, 9(10), 838-850. researchgate.net
- 151. Veit, M., van Asten, R., Olie, A., & Prinz, P. (2022). The role of dietary sugars, overweight, and obesity in type 2 diabetes mellitus: a narrative review. European journal of clinical nutrition, 76(11), 1497-1501. nature.com
- 152.Kasmad, K., Abdillah, A. J., & Karnelia, M. (2022). The impact of using brisk walking exerrcise in lower blood sugar of patients with type 2 diabetes mellitus. International Journal of Nursing Information, 1(1), 10-17. qqrcenter.com
- 153.Zarifsanaiey, N., Jamalian, K., Bazrafcan, L., Keshavarzy, F., & Shahraki, H. R. (2020). The effects of mindfulness training on the level of happiness and blood sugar in diabetes patients. Journal of Diabetes & Metabolic Disorders, 19, 311-317. nih.gov
- 154.Dewi, E. U., Widari, N. P., Nursalam, N., Mahmudah, M., Sari, E. Y., & Ning, Y. F. (2023). The relationship between diabetes self-care management and blood glucose level among type 2 diabetes mellitus patients. Int J Public Heal Sci, 12, 1165. academia.edu
- 155.Mukhtar, Y., Galalain, A., & Yunusa, U. (2020). A modern overview on diabetes mellitus: a chronic endocrine disorder. European Journal of Biology. ajpojournals.org
- 156.Westman, E. C. (2021). Type 2 diabetes mellitus: a pathophysiologic perspective. Frontiers in nutrition. frontiersin.org
- 157. Sieniawska, D., Sieniawska, J., & Proszowska, P. (2024). The Impact of Physical Activity on Depression Treatment: A Literature Review. Quality in Sport. umk.pl
- 158.Hossain, M. N., Lee, J., Choi, H., Kwak, Y. S., & Kim, J. (2024). The impact of exercise on depression: how moving makes your brain and body feel better. Physical Activity and Nutrition, 28(2), 43. nih.gov
- 159.Mahindru, A., Patil, P., & Agrawal, V. (2023). Role of physical activity on mental health and well-being: A review. Cureus. nih.gov
- 160.Pahlavani, H. A. (2023). Possible role of exercise therapy on depression: effector neurotransmitters as key players. Behavioural brain research.
- 161.Chen, C., & Nakagawa, S. (2023). Recent advances in the study of the neurobiological mechanisms behind the effects of physical activity on

- mood, resilience and emotional disorders. Advances in Clinical and Experimental Medicine, 32(9), 937-942. umw.edu.pl
- 162.HOODA, V. S., MULEY, P. A., MULEY, P. P., ANJANKAR, A., & BANDRE, G. (2024). Effect of Exercise on Depression, Anxiety and Mood: A Narrative Review. Journal of Clinical & Diagnostic Research, 18(1).
- 163.Liu, X. Q. & Wang, X. (2024). Unlocking the power of physical activity in easing psychological distress. World Journal of Psychiatry. nih.gov
- 164.Arazi, H., Dadvand, S. S., & Suzuki, K. (2022). Effects of exercise training on depression and anxiety with changing neurotransmitters in methamphetamine long term abusers: A narrative review. Biomedical Human Kinetics. sciendo.com
- 165. Arsović, N., Đurović, R., & Rakočević, R. (2020). Influence of physical and sports activity on mental health. Facta Universitatis, Series: Physical Education and Sport, 559-568. ni.ac.rs
- 166.Hyung-Sik, D. & Tokui, S. (2023). The relationship between physical activities and mental health: A review. Archives of Clinical Psychiatry. archivespsy.com
- 167.Chen, X., Duan, Y., & Zhou, Y. (2021). Effects of hemodialysis and peritoneal dialysis on glycometabolism in patients with end-stage diabetic nephropathy. Blood Purification.
- 168.Zainordin, N. A., Eddy Warman, N. A., Mohamad, A. F., Abu Yazid, F. A., Ismail, N. H., Chen, X. W., & Abdul Ghani, R. (2021). Safety and efficacy of very low carbohydrate diet in patients with diabetic kidney disease—A randomized controlled trial. PLoS One, 16(10), e0258507. plos.org
- 169.Jakubowska, Z. & Malyszko, J. (2024). Continuous glucose monitoring in people with diabetes and end-stage kidney disease—review of association studies and Evidence-Based discussion. Journal of Nephrology. springer.com
- 170.Chowdhury, T. A., Mukuba, D., Casabar, M., Byrne, C., & Yaqoob, M. M. (2024). Management of diabetes in people with advanced chronic kidney disease. Diabetic Medicine, e15402.
- 171. Stephens, J. W., Brown, K. E., & Min, T. (2020). Chronic kidney disease in type 2 diabetes: Implications for managing glycaemic control, cardiovascular and renal risk. Diabetes, Obesity and Metabolism, 22, 32-45. core.ac.uk

- 172.Bomholt, T., Rix, M., Almdal, T., Knop, F. K., Rosthøj, S., Heinrich, N. S., & Hornum, M. (2022). The accuracy of hemoglobin A1c and fructosamine evaluated by long-term continuous glucose monitoring in patients with type 2 diabetes undergoing hemodialysis. Blood purification, 51(7), 608-616.
- 173.Bomholt, T., Adrian, T., Nørgaard, K., Ranjan, A. G., Almdal, T., Larsson, A., & Hornum, M. (2021). The use of HbA1c, glycated albumin and continuous glucose monitoring to assess glucose control in the chronic kidney disease population including dialysis. Nephron, 145(1), 14-19. karger.com
- 174.Skolnik, N. S. & Style, A. J. (2021). Importance of early screening and diagnosis of chronic kidney disease in patients with type 2 diabetes. Diabetes Therapy. springer.com
- 175.Ricciardi, C. A. & Gnudi, L. (2021). Kidney disease in diabetes: from mechanisms to clinical presentation and treatment strategies. Metabolism.
- 176.Chen, Y., Lee, K., Ni, Z., & He, J. C. (2020). Diabetic kidney disease: challenges, advances, and opportunities. Kidney diseases. karger.com
- 177. Yamazaki, T., Mimura, I., Tanaka, T., & Nangaku, M. (2021). Treatment of diabetic kidney disease: current and future. Diabetes & metabolism journal, 45(1), 11-26. koreamed.org
- 178.Banerjee, D., Winocour, P., Chowdhury, T. A., De, P., Wahba, M., Montero, R., & Association of British Clinical Diabetologists and The Renal Association. (2022). Management of hypertension and reninangiotensin-aldosterone system blockade in adults with diabetic kidney disease: Association of British Clinical Diabetologists and the Renal Association UK guideline update 2021. BMC nephrology, 23, 1-31. springer.com
- 179. Tuttle, K. R., Agarwal, R., Alpers, C. E., Bakris, G. L., Brosius, F. C., Kolkhof, P., & Uribarri, J. (2022). Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney international, 102(2), 248-260. sciencedirect.com
- 180. Cherney, D. Z., Kanbay, M., & Lovshin, J. A. (2020). Renal physiology of glucose handling and therapeutic implications. Nephrology Dialysis Transplantation, 35(Supplement_1), i3-i12. oup.com
- 181.Kumar, A., Kumar, T., Bhargava, M., Raj, R., Vaibhav, V., & Kishore, J. (2020). Salivary and serum glucose levels in diabetes mellitus patients versus control—a randomised control trial. Journal of Medicine and Life, 13(2), 235. nih.gov

- 182. Wang, W., Chen, W., Liu, Y., Li, L., Li, S., Tan, J., & Sun, X. (2021). Blood glucose levels and mortality in patients with sepsis: dose–response analysis of observational studies. Journal of Intensive Care Medicine, 36(2), 182-190.
- 183.Sia, H. K., Kor, C. T., Tu, S. T., Liao, P. Y., & Wang, J. Y. (2021). Self-monitoring of blood glucose in association with glycemic control in newly diagnosed non-insulin-treated diabetes patients: a retrospective cohort study. Scientific Reports. nature.com
- 184.Pleus, S., Freckmann, G., Schauer, S., Heinemann, L., Ziegler, R., Ji, L., & Hinzmann, R. (2022). Self-monitoring of blood glucose as an integral part in the management of people with type 2 diabetes mellitus. Diabetes Therapy, 13(5), 829-846. springer.com
- 185.Budiastutik, I., Subagio, W. H., Kartasurya, I. M., Widjanarko, B., Kartini, A., Soegiyanto, B., & Suhartono, S. (2022). The effect of Aloe vera on fasting blood glucose levels in pre-diabetes and type 2 diabetes mellitus: A systematic review and meta-analysis. Journal of Pharmacy & Pharmacognosy Research, 10(4), 737-747. jppres.com
- 186.Kesavadev, J., Misra, A., Saboo, B., Aravind, S. R., Hussain, A., Czupryniak, L., & Raz, I. (2021). Blood glucose levels should be considered as a new vital sign indicative of prognosis during hospitalization. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15(1), 221-227. nih.gov
- 187.Sukkar, S. G. & Muscaritoli, M. (2021). A clinical perspective of low carbohydrate ketogenic diets: a narrative review. Frontiers in nutrition. frontiersin.org
- 188.Murphy, C., Bilek, L. D., & Koehler, K. (2021). Low energy availability with and without a high-protein diet suppresses bone formation and increases bone resorption in men: A randomized controlled pilot study. Nutrients. mdpi.com
- 189.Jiao, A., Zhao, Y., Chu, L., Yang, Y., & Jin, Z. (2024). A review on animal and plant proteins in regulating diabetic kidney disease: Mechanism of action and future perspectives. Journal of Functional Foods. sciencedirect.com
- 190.Baragetti, I., De Simone, I., Biazzi, C., Buzzi, L., Ferrario, F., Luise, M. C., & Pozzi, C. (2020). The low-protein diet for chronic kidney disease: 8 years of clinical experience in a nephrology ward. Clinical Kidney Journal, 13(2), 253-260. oup.com

- 191. Turtos, A. M. (2022). The anti-tumoral effects of a low protein diet and of the IRE1 α signaling. hal.science
- 192. Talib, W. H., Mahmod, A. I., Kamal, A., Rashid, H. M., Alashqar, A. M., Khater, S., & Waly, M. (2021). Ketogenic diet in cancer prevention and therapy: molecular targets and therapeutic opportunities. Current issues in molecular biology, 43(2), 558-589. mdpi.com
- 193. Garofalo, C., Borrelli, S., De Nicola, L., Cabiddu, G., Vizzardi, V., Russo, R., & Minutolo, R. (2024). # 2969 One-year longitudinal changes in nutritional parameters associated with low-protein diets in patients starting with incremental PD. Nephrology Dialysis Transplantation, 39(Supplement_1), gfae069-0172.
- 194.Kalantar-Zadeh, K., Kramer, H. M., & Fouque, D. (2020). High-protein diet is bad for kidney health: unleashing the taboo. Nephrology Dialysis Transplantation, 35(1), 1-4. oup.com